1. Exploiting Extensive-Form Structure in Empirical Game-Theoretic Analysis
- Author
-
Konicki, Christine, Chakraborty, Mithun, and Wellman, Michael P.
- Subjects
FOS: Computer and information sciences ,Computer Science - Computer Science and Game Theory ,Computer Science and Game Theory (cs.GT) - Abstract
Empirical game-theoretic analysis (EGTA) is a general framework for reasoning about complex games using agent-based simulation. Data from simulating select strategy profiles is employed to estimate a cogent and tractable game model approximating the underlying game. To date, EGTA methodology has focused on game models in normal form; though the simulations play out in sequential observations and decisions over time, the game model abstracts away this temporal structure. Richer models of \textit{extensive-form games} (EFGs) provide a means to capture temporal patterns in action and information, using tree representations. We propose \textit{tree-exploiting EGTA} (TE-EGTA), an approach to incorporate EFG models into EGTA\@. TE-EGTA constructs game models that express observations and temporal organization of activity, albeit at a coarser grain than the underlying agent-based simulation model. The idea is to exploit key structure while maintaining tractability. We establish theoretically and experimentally that exploiting even a little temporal structure can vastly reduce estimation error in strategy-profile payoffs compared to the normal-form model. Further, we explore the implications of EFG models for iterative approaches to EGTA, where strategy spaces are extended incrementally. Our experiments on several game instances demonstrate that TE-EGTA can also improve performance in the iterative setting, as measured by the quality of equilibrium approximation as the strategy spaces are expanded., This paper has been slightly revised from the original version published at WINE 2022; to wit, the proof included in the appendices of our key theoretical result has been expanded
- Published
- 2023