1. Organic Supercritical Thermodynamic Cycles with Isothermal Turbine
- Author
-
Richert, Marian Piwowarski, Krzysztof Kosowski, and Marcin
- Subjects
supercritical thermodynamic cycles ,organic media ,efficiency ,isothermal expansion ,adiabatic expansion - Abstract
Organic Rankine cycles (ORC) are quite popular, but the overall efficiencies of these plants are rather very low. Numerous studies have been conducted in many scientific centers and research centers to improve the efficiency of such cycles. The research concerns both the modification of the cycle and the increase in the parameters of the medium at the inlet to the turbine. However, the efficiency of even these modified cycles rarely exceeds 20%. The plant modifications and the optimization of the working medium parameters, as a rule, lead to cycles with the high pressure and high temperature of live vapor and with a regenerator (heat exchanger) for the heating, vaporization and superheating of the medium. A new modified cycle with supercritical parameters of the working medium and with a new type of turbine has been described and calculated in the paper. For the first time, the isothermal turbine is proposed for supercritical organic cycles, though this solution is known as the Ericsson cycle for gas turbines. The innovative cycle and the usual ORC plants are characterized by almost identical block diagrams, while in the proposed cycle, the work of the turbine is obtained as a result of isothermal expansion and not in an adiabatic process. The analysis has been performed for 11 different working media and two cycles. The calculations have shown that power plants with isothermal expansion achieve better efficiency than cycles with adiabatic turbines. For example, the rise in efficiency changes from 8 percentage points for R245fa up to 10 percentage points for acetone. The calculations have proved that it is possible to obtain efficiency exceeding 50% for organic power plants. This is an outstanding result compared with modern steam and gas turbine units.
- Published
- 2023
- Full Text
- View/download PDF