1. Decoupling Parasitic Reactions at the Positive Electrode Interfaces in Argyrodite-Based Systems
- Author
-
Elisa Quemin, Romain Dugas, Tuncay Koç, Benjamin Hennequart, Ronan Chometon, Jean-Marie Tarascon, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Collège de France - Chaire Chimie du solide et énergie, and Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
argyrodite solid electrolyte ,electrochemical impedance spectroscopy ,coated layered oxides ,General Materials Science ,[CHIM.MATE]Chemical Sciences/Material chemistry ,all-solid-state-batteries ,interfaces stability - Abstract
International audience; Li-ion batteries are the key stones of electric vehicles, but with the emergence of solid-state Li batteries for improving autonomy and fast charging, the need for mastering the solid electrolyte (SE)/electrode material interfaces is crucial. All-solid-state-batteries (ASSBs) suffer from long-term capacity fading with enhanced decomposition reactions. So far, these reactions have not been extensively studied in Li(6)PS(5)Cl-based systems because of the complexity of overlapping degradation mechanisms. Herein, those reactions are studied in depth. We investigated their effects under various operating conditions (temperature, C-rate, voltage window), types of active materials, and with or without carbon additives. From combined resistance monitoring and impedance spectroscopy measurements, we could decouple two reactions (NMC/SE and VGCF/SE) with an inflection dependent on the cutoff potential (3.6 or 3.9 V vs Li-In/In are studied) on charge and elucidate their distinct repercussions on cycling performances. The pernicious effect of carbon additives on both the first cycle and power performances is disclosed, so as its long-term effect on capacity retention. As a mean to resolve these issues, we scrutinized the benefits of a coating layer around NMC particles to prevent high potential interactions, minimize the drastic loss of capacity observed with bare NMC, and simply propose to get rid of carbon additives. Altogether, we hope these findings provide insights and novel methodologies for designing innovative performing solid-state batteries.
- Published
- 2022