1. Microstructural Characterization Associated with Solid-Solid Transformations.
- Author
-
Yip, Sidney, Rickman, J. M., and Barmak, K.
- Abstract
Materials scientists have long been interested in the characterization of complex poly-crystalline systems, as embodied in the distribution of grain size and shape, and have sought to link microstructural features with observed mechanical, electronic and magnetic properties [1]. The importance of detailed microstructural characterization is underscored by systems of limited spatial dimensionality, with length scales of the order of nanometers to microns, as their reliability and performance are greatly influenced by specific microstructural features rather than by average, bulk properties [2]. For example, the functionalities of many electronic devices depend critically on the microstructure of thin metallic films via the film deposition process and the occurrence of reactive phase formation at metallic contacts. Various tools are available for quantitative microstructural characterization. Most notably, microstructural analyses often employ stereological techniques [1] and the related formalism of stochastic geometry [3] to interrogate grain populations and to deduce plausible growth scenarios that led to the observed grain morphologies. In this effort computer simulation is especially valuable, permitting one to implement various growth assumptions and to generate a large number of microstructures for subsequent analysis. The acquisition of comparable grain size and shape information from experimental images is, however, often problematic given difficulties inherent in grain recognition. The case of polycrystalline thin films is illustrative here. In these systems transmission electron microscopy (TEM) is necessary to resolve pertinent microstructural features. Unfortunately, complex contrast variations peculiar to TEM images plague grain recognition and therefore image interpretation. As a result, the tedious, state-of-the-art analysis, until quite recently [4, 6], involved human intervention to trace grain boundaries and to collect grain statistics. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF