1. A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans.
- Author
-
I, Nunoya K, T, Yokoi, K, Kimura, T, Kainuma, K, Satoh, M, Kinoshita, and T, Kamataki
- Abstract
(+)-Cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) is a newly developed drug as a platelet-activating factor receptor antagonist. The disposition of SM-12502 was investigated in plasma from 28 healthy Japanese volunteers after a single i.v. administration of SM-12502. Three of 28 subjects were phenotyped as poor metabolizers (PMs). Genomic DNAs from three extensive metabolizers or three PMs of SM-12502 were analyzed by Southern blot analysis with CYP2A6 cDNA as a probe. DNAs from three PMs digested with SacI and SphI showed novel restriction fragment length polymorphisms (RFLPs); one type without 4.5- and 2.6-kb fragments and a weak density of a 6.4-kb fragment (E-type), and the other type without 7.1- and 5.5-kb restriction fragments (C'-type) as compared with three extensive metabolizers, respectively. The deletional restriction fragments specific to three PMs in SacI- and SphI-RFLPs were identified as CYP2A6. Using polymerase chain reaction-RFLP analyses of the gene from the three PMs, we found that the exon 1, exon 8, and exon 9 in CYP2A6 were absent. A new RFLP characterized by SacI and SphI was found to be due to the entire gene deletion of the three exons and was associated with the decreased metabolism of SM-12502. This study demonstrates a new deletional allele in the human CYP2A6 gene responsible for the poor metabolic phenotype of SM-12502.
- Published
- 1999