1. Granulocyte-macrophage colony-stimulating factor preferentially activates the 94-kD STAT5A and an 80-kD STAT5A isoform in human peripheral blood monocytes
- Author
-
Rosen, RL, Winestock, KD, Chen, G, Liu, X, Hennighausen, L, and Finbloom, DS
- Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces immediate effects in monocytes by activation of the Janus kinase (JAK2) and STAT transcription factor (STAT5) pathway. Recent studies have identified homologues of STAT5, STAT5A, and STAT5B, as well as lower molecular weight variants of STAT5. To define the activation of the STAT5 homologues and lower molecular weight variant in human monocytes and monocytes differentiated into macrophages by culture in macrophage- CSF (M-CSF), we measured the GM-CSF induced tyrosine phosphorylation of STAT5A, STAT5B, and any lower molecular weight STAT5 isoforms. Freshly isolated monocytes expressed 94-kD STAT5A, 92-kD STAT5B, and an 80-kD STAT5A molecule. Whereas 94-kD STAT5A was clearly tyrosine phosphorylated and bound to the enhancer element, the gamma response region (GRR), of the Fc gamma RI gene, substantially less tyrosine phosphorylated STAT5B bound to the immobilized GRR element. Macrophages lost their ability to express the 80-kD STAT5A protein, but retained their ability to activate STAT5A. STAT5A-STAT5A homodimers and STAT5A- STAT5B heterodimers formed in response to GM-CSF. Therefore, activation of STAT5A predominates compared to STAT5B when assayed by direct immunoprecipitation and by evaluation of bound STATs to immobilized GRR. Selective activation of STAT5 homologues in addition to generation of lower molecular isoforms may provide specificity and control to genes expressed in response to cytokines such as GM-CSF.
- Published
- 1996
- Full Text
- View/download PDF