1. Characterization of yellow‐green leaf1mutant for improved phosphorus use efficiency and rapid offspring screening in Tartary buckwheat
- Author
-
Wang, Yan, Chen, Xuling, Guan, Zhixiu, Yang, Li, Xiang, Dabing, Wan, Yan, Jiang, Kai, and Liang, Chenggang
- Abstract
Leaf color mutations provide valuable genetic resources for elucidating the molecular regulatory mechanisms of plant growth and serve as efficient tools for screening offspring in crossbreeding. In this study, a Tartary buckwheat (Fagopyrum tataricum) mutant with yellow‐green leaves (yl1) was isolated from 60Co‐γ‐radiation mutation bank. Compared to wild type (WT), yl1showed similar biomass and yield, despite a lower chlorophyll content and net photosynthetic rate. However, yl1displayed significantly higher total phosphorus content after 14 days of medium and low phosphorus treatment. By using yl1as the maternal parent, hybrid offspring could be visually distinguished at the cotyledon stage. Genetic analysis revealed that the yl1phenotype was attributed to a single recessive mutation. Combined metabolome and transcriptome analysis identified 205 differential expressed metabolites (DEMs) and 123 differential expressed genes enriched in 30 pathways or metabolisms between yl1and WT. Remarkably, the upregulation of SPX3, 5PTase2, PHO1, PAP3, PAP2, PAP7, and IPAP16, which are involved in enhancing phosphorus absorption, assimilation, transport, and remobilization, along with PLDζ1, GDPD1, MGD2, and NPC4L, which contribute to improving lipid metabolism, collectively resulted in high accumulation of 41 phosphorus‐containing DEMs (including 37 lipids) in yl1. This study emphasizes the potential of yl1for effective screening of offspring and uncovers the interplay between photosynthesis and lipid metabolism, providing valuable insights to improve phosphorus use efficiency in Tartary buckwheat. yl1was available for efficient offspring screening at the cotyledon stage.Altered lipid metabolism partly compensated for insufficient photosynthesis to sustain yl1growth.yl1had candidate genes with potential to improve phosphorus use efficiency.yl1, resulting from a single recessive locus mutation, displayed yellow‐green leaves without growth suppression.
- Published
- 2024
- Full Text
- View/download PDF