1. Effect of Novel and Traditional Intracanal Medicaments on Biofilm Viability and Composition.
- Author
-
Siu, Shuk Yi, Pudipeddi, Akhila, Vishwanath, Vijetha, Cheng Lee, Angeline Hui, Tin Cheung, Amelia Wan, Pan Cheung, Gary Shun, and Neelakantan, Prasanna
- Subjects
ENTEROCOCCUS faecalis ,CALCIUM hydroxide ,ONE-way analysis of variance ,CONFOCAL microscopy ,MULTIPLE comparisons (Statistics) - Abstract
The aim of this study was to test the hypothesis that a combination of D-amino acids (DAAs) and trans -cinnamaldehyde (TC) demonstrates superior antibiofilm activity to calcium hydroxide (CH) and untreated controls. In this 3-part in vitro study, the concentration of DAAs (D-methionine, D-leucine, D-tyrosine, and D-tryptophan) that would significantly decrease Enterococcus faecalis and Actinomyces naeslundii biofilm biomass was first determined. Then, the effect of TC + selected DAAs on polymicrobial biofilms was characterized by quantifying the biomass and biofilm viability. Finally, the antibiofilm effects of TC + DAA was compared with CH and untreated controls by (i) determining bacterial viability and (ii) quantifying biofilm matrix composition using selective fluorescence-binding analysis. Statistical analysis was performed using one-way ANOVA and appropriate multiple comparisons test, with P <.05 considered as statistically significant. TC (0.06%) + D-tyrosine (1 mM) + D-tryptophan (25 mM) significantly reduced the biomass and biofilm viability compared to the control (P <.05). While no significant difference was observed between TC + DAA and CH in the cultivable bacterial counts (P >.05), confocal microscopy demonstrated a significantly greater percentage of dead bacteria in TC + DAA-treated biofilms compared to CH and the control (P <.05). TC + DAA significantly decreased the biovolume and all the examined components of the biofilm matrix quantity compared to the control, while CH significantly reduced only the exopolysaccharide quantity (P <.05). The combination of TC + D-tyrosine + D-tryptophan demonstrated superior antibiofilm activity (biofilm bacterial killing and reduction of matrix quantity) to CH and has potential to be developed as an intracanal medicament. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF