44 results on '"Paunova-Krasteva, Tsvetelina"'
Search Results
2. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention
3. From Traditional Dairy Product “Katak” to Beneficial Lactiplantibacillus plantarum Strains
4. Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology
5. Ultra-Short Laser-Assisted Micro-Structure Formations on Mg/Zn Double-Doped Calcium Phosphate Ceramics for Enhanced Antimicrobial Activity
6. Multiple cry Genes in Bacillus thuringiensis Strain BTG Suggest a Broad-Spectrum Insecticidal Activity
7. Chromobacterium Violaceum: A Model for Evaluating the Anti-Quorum Sensing Activities of Plant Substances
8. Chromobacterium violaceum: Model for Evaluating Anti-Quorum Sensing Activity of Plant Substances
9. Figure 4 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
10. Figure 2 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
11. Figure 3 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
12. Figure 1 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
13. Figure 9 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
14. Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool
15. Supplementary material 1 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
16. Figure 8 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
17. Figure 7b from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
18. Figure 7a from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
19. Figure 5 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
20. Figure 6 from: Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B (2023) Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal 11: e100525. https://doi.org/10.3897/BDJ.11.e100525
21. Ciprofloxacin-Loaded Mixed Polymeric Micelles as Antibiofilm Agents
22. A Thermostable Lipase Isolated from Brevibacillus thermoruber Strain 7 Degrades Ɛ-Polycaprolactone
23. Bioactive Azadirachta indica and Melia azedarach leaves extracts with anti-SARS-CoV-2 and antibacterial activities
24. Effects of cationic polymers on the viability of microbial biofilms
25. Ɛ-Polycaprolactone degradation by a thermostable lipase isolated from Brevibacillus thermoruber strain 7
26. Hybrid Chitosan/CaO-Based Nanocomposites Doped with Plant Extracts from Azadirachta indica and Melia azedarach: Evaluation of Antibacterial and Antibiofilm Activities
27. The concept for the antivirulence therapeutics approach as alternative to antibiotics: hope or still a fiction?
28. Hybrid chitosan/CaO-based nanocomposites doped with plant extracts from Azadirachta indica and Melia azedarach: evaluation of antibacterial and antibiofilm activities
29. Bulgarian Medicinal Extracts as Natural Inhibitors with Antiviral and Antibacterial Activity
30. Modulation of Biofilm Growth by Sub‐Inhibitory Amounts of Antibacterial Substances
31. Phenotypic Investigation of Paired Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Prior- and Post-tobramycin Treatment
32. Degradation of Poly(ε-caprolactone) by a Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring
33. Plastic Degradation by Extremophilic Bacteria
34. Structural, Thermal, and Storage Stability of Rapana Thomasiana Hemocyanin in the Presence of Cholinium-Amino Acid-Based Ionic Liquids
35. Enhanced cellular uptake of platinum by a tetracationic Pt(II) nanocapsule and its implications to cancer treatment
36. Destruction of Pseudomonas aeruginosa pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles
37. Application of cationic polymer micelles for the dispersal of bacterial biofilms
38. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains
39. Distribution patterns of carbohydrates in murine glycocalyx
40. Cyclic enterobacterial common antigens fromEscherichia coliO157 as microbe-associated molecular patterns
41. Temperature-stress tolerance of the fungal strain Aspergillus niger 26: physiological and ultrastructural changes
42. Occurrence and structure of cyclic Enterobacterial Common Antigen in Escherichia coli O157:H−
43. Copper stress and filamentous fungusHumicola lutea103 — ultrastructural changes and activities of key metabolic enzymes
44. Released products of pathogenic bacteria stimulate biofilm formation by Escherichia coli K-12 strains
Catalog
Books, media, physical & digital resources
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.