This paper deals with the rate of convergence for the central limit theorem of estimators of the drift coefficient, denoted $\theta$, for a Ornstein-Uhlenbeck process $X \coloneqq \{X_t,t\geq0\}$ observed at high frequency. We provide an Approximate minimum contrast estimator and an approximate maximum likelihood estimator of $\theta$, namely $\widetilde{\theta}_{n}\coloneqq {1}/{\left(\frac{2}{n} \sum_{i=1}^{n}X_{t_{i}}^{2}\right)}$, and $\widehat{\theta}_{n}\coloneqq -{\sum_{i=1}^{n} X_{t_{i-1}}\left(X_{t_{i}}-X_{t_{i-1}}\right)}/{\left(\Delta_{n} \sum_{i=1}^{n} X_{t_{i-1}}^{2}\right)}$, respectively, where $ t_{i} = i \Delta_{n}$, $ i=0,1,\ldots, n $, $\Delta_{n}\rightarrow 0$. We provide Wasserstein bounds in central limit theorem for $\widetilde{\theta}_{n}$ and $\widehat{\theta}_{n}$., Comment: arXiv admin note: text overlap with arXiv:2102.04810