1. Logarithmic lift of the su(2)_{-1/2} model
- Author
-
Lesage, F., Mathieu, P., Rasmussen, J., and Saleur, H.
- Subjects
High Energy Physics - Theory - Abstract
This paper carries on the investigation of the non-unitary su(2)_{-1/2} WZW model. An essential tool in our first work on this topic was a free-field representation, based on a c=-2 \eta\xi ghost system, and a Lorentzian boson. It turns out that there are several ``versions'' of the \eta\xi system, allowing different su(2)_{-1/2} theories. This is explored here in details. In more technical terms, we consider extensions (in the c=-2 language) from the small to the large algebra representation and, in a further step, to the full symplectic fermion theory. In each case, the results are expressed in terms of su(2)_{-1/2} representations. At the first new layer (large algebra), continuous representations appear which are interpreted in terms of relaxed modules. At the second step (symplectic formulation), we recover a logarithmic theory with its characteristic signature, the occurrence of indecomposable representations. To determine whether any of these three versions of the su(2)_{-1/2} WZW is well-defined, one conventionally requires the construction of a modular invariant. This issue, however, is plagued with various difficulties, as we discuss., Comment: 28 pages, 9 figures, v2: presentation modified, version to be published
- Published
- 2003
- Full Text
- View/download PDF