1. ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
- Author
-
Zhan, Guanqi, Liu, Yuanpei, Han, Kai, Xie, Weidi, and Zisserman, Andrew
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP/SigLIP and the state-of-the-art BLIP-2 architectures. To train the architecture with limited computing resources, we develop a 'student friendly' best practice involving global hard sample mining, and selection and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. Benefiting from the novel architecture and data curation, experiments show our enhanced network significantly boosts CLIP/SigLIP performance and outperforms the state-of-the-art BLIP-2 model on text-to-image retrieval.
- Published
- 2025