6 results on '"building retrofit"'
Search Results
2. Experimental evaluation of seismic performance of interior RC beam-column joints strengthened with FRP composites
- Author
-
Allam, Khaled, Mosallam, Ayman S, and Salama, Mohamed A
- Subjects
Beam-column joints ,Building retrofit ,Rehabilitation ,FRP composites ,Hybrid composite connector ,Bond-slip ,Joint shear strength ,Ductility ,Civil Engineering ,Materials Engineering ,Interdisciplinary Engineering - Published
- 2019
3. Quantifying the benefits of a building retrofit using an integrated system approach: A case study
- Author
-
Regnier, C, Sun, K, Hong, T, and Piette, MA
- Subjects
Building retrofit ,Integrated system ,Energy savings ,Energy conservation measures ,Building simulation ,Integrated design ,Building & Construction ,Engineering ,Built Environment and Design - Abstract
Building retrofits provide a large opportunity to significantly reduce energy consumption in the buildings sector. Traditional building retrofits focus on equipment upgrades, often at the end of equipment life or failure, and result in replacement with marginally improved similar technology and limited energy savings. The Integrated System (IS) retrofit approach enables much greater energy savings by leveraging interactive effects between end use systems, enabling downsized or lower energy technologies. This paper presents a case study in Hawaii quantifying the benefits of an IS retrofit approach compared to two traditional retrofit approaches: a Standard Practice of upgrading equipment to meet minimum code requirements, and an Improved Practice of upgrading equipment to a higher efficiency. The IS approach showed an energy savings of 84% over existing building energy use, much higher than the traditional approaches of 13% and 33%. The IS retrofit also demonstrated the greatest energy cost savings potential. While the degree of savings realized from the IS approach will vary by building and climate, these findings indicate that savings on the order of 50% and greater are not possible without an IS approach. It is therefore recommended that the IS approach be universally adopted to achieve deep energy savings.
- Published
- 2018
4. Quantifying the benefits of a building retrofit using an integrated system approach: A case study
- Author
-
Regnier, Cynthia, Sun, Kaiyu, Hong, Tianzhen, and Piette, Mary Ann
- Subjects
Built Environment and Design ,Building ,Affordable and Clean Energy ,Building retrofit ,Integrated system ,Energy savings ,Energy conservation measures ,Building simulation ,Integrated design ,Engineering ,Building & Construction ,Built environment and design - Abstract
Building retrofits provide a large opportunity to significantly reduce energy consumption in the buildings sector. Traditional building retrofits focus on equipment upgrades, often at the end of equipment life or failure, and result in replacement with marginally improved similar technology and limited energy savings. The Integrated System (IS) retrofit approach enables much greater energy savings by leveraging interactive effects between end use systems, enabling downsized or lower energy technologies. This paper presents a case study in Hawaii quantifying the benefits of an IS retrofit approach compared to two traditional retrofit approaches: a Standard Practice of upgrading equipment to meet minimum code requirements, and an Improved Practice of upgrading equipment to a higher efficiency. The IS approach showed an energy savings of 84% over existing building energy use, much higher than the traditional approaches of 13% and 33%. The IS retrofit also demonstrated the greatest energy cost savings potential. While the degree of savings realized from the IS approach will vary by building and climate, these findings indicate that savings on the order of 50% and greater are not possible without an IS approach. It is therefore recommended that the IS approach be universally adopted to achieve deep energy savings.
- Published
- 2018
5. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures
- Author
-
Sun, Kaiyu and Hong, Tianzhen
- Subjects
Built Environment and Design ,Engineering ,Architecture ,Building ,Behavioral and Social Science ,Affordable and Clean Energy ,Occupant behavior ,Energy conservation measures ,Building performance simulation ,Energy use ,Building retrofit ,Uncertainty assessment ,Building & Construction ,Built environment and design - Abstract
To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. This study presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). The study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.
- Published
- 2017
6. A framework for quantifying the impact of occupant behavior on energy savings of energy conservation measures
- Author
-
Sun, K and Hong, T
- Subjects
Occupant behavior ,Energy conservation measures ,Building performance simulation ,Energy use ,Building retrofit ,Uncertainty assessment ,Behavioral and Social Science ,Building & Construction ,Engineering ,Built Environment and Design - Abstract
To improve energy efficiency—during new buildings design or during a building retrofit—evaluating the energy savings potential of energy conservation measures (ECMs) is a critical task. In building retrofits, occupant behavior significantly impacts building energy use and is a leading factor in uncertainty when determining the effectiveness of retrofit ECMs. Current simulation-based assessment methods simplify the representation of occupant behavior by using a standard or representative set of static and homogeneous assumptions ignoring the dynamics, stochastics, and diversity of occupant's energy-related behavior in buildings. The simplification contributes to significant gaps between the simulated and measured actual energy performance of buildings. This study presents a framework for quantifying the impact of occupant behaviors on ECM energy savings using building performance simulation. During the first step of the study, three occupant behavior styles (austerity, normal, and wasteful) were defined to represent different levels of energy consciousness of occupants regarding their interactions with building energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation workflow was introduced to determine a range of the ECM energy savings. Then, guidance was provided to interpret the range of ECM savings to support ECM decision making. Finally, a pilot study was performed in a real building to demonstrate the application of the framework. Simulation results show that the impact of occupant behaviors on ECM savings vary with the type of ECM. Occupant behavior minimally affects energy savings for ECMs that are technology-driven (the relative savings differ by less than 2%) and have little interaction with the occupants; for ECMs with strong occupant interaction, such as the use of zonal control variable refrigerant flow system and natural ventilation, energy savings are significantly affected by occupant behavior (the relative savings differ by up to 20%). The study framework provides a novel, holistic approach to assessing the uncertainty of ECM energy savings related to occupant behavior, enabling stakeholders to understand and assess the risk of adopting energy efficiency technologies for new and existing buildings.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.