1. NLP based on GCVAE for intelligent Fault Analysis in Semiconductor industry
- Author
-
Wang, Zhiqiang, Ezukwoke, Kenneth, Hoayek, Anis, Batton-Hubert, Mireille, Boucher, Xavier, Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Universitaire de Technologie - Nantes (IUT Nantes), Université de Nantes (UN), Robots and Machines for Manufacturing, Society and Services (LS2N - équipe RoMas), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Institut Henri Fayol (FAYOL-ENSMSE), Département Génie de l’environnement et des organisations (FAYOL-ENSMSE), and Institut Henri Fayol-Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)
- Subjects
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
International audience; In the semiconductor industry, Failure Analysis (FA) is an investigation to determine the root causes of a failure. It also involves an intermediate analysis to build the steps of the failure analysis in order to mitigate future failures and to facilitate the future FA. In the framework of the FA 4.0 project, the reporting system records three items of information using natural language: the failure analysis request description (input space) and analysis steps (paths), as well as generic categories of root cause conclusion (output space). The main objective of this article is to develop a system which is able to automatically help industries carry out fault analysis diagnoses with Artificial intelligence (AI). This article extends and validates the adapted methodology proposed by [1] to transform text data into numeric data based on Natural Language Processing (NLP). It transforms the text data from the input space and output space. Different deep learning algorithms based on a Variational AutoEncoder (VAE) are applied to the output space to reduce the dimension of the numeric data, and the performance of each VAE is evaluated with different metrics. The Generalized-Controllable VAE (GCVAE) is the one best suited to our case. A Gaussian Mixture Model (GMM) is then used to perform clustering in the latent space generated by the GCVAE. A centroid analysis is also conducted to verify the similarity of each cluster.
- Published
- 2022
- Full Text
- View/download PDF