1. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene.
- Author
-
Rigosi AF, Hill HM, Glavin NR, Pookpanratana SJ, Yang Y, Boosalis AG, Hu J, Rice A, Allerman AA, Nguyen NV, Hacker CA, Elmquist RE, Hight Walker AR, and Newell DB
- Abstract
Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride ( a -BN and h -BN) films. The a -BN is formed with pulsed laser deposition and the h -BN is grown with triethylboron (TEB) and NH
3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a -BN, and h -BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h -BN heterostructure., Competing Interests: Conflict of Interest: The authors declare no competing financial interest.- Published
- 2018
- Full Text
- View/download PDF