1. Nonelementary Complexities for Branching VASS, MELL, and Extensions
- Author
-
Ranko Lazić, Sylvain Schmitz, University of Warwick [Coventry], Laboratoire Spécification et Vérification [Cachan] (LSV), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Verification in databases (DAHU), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and ANR-11-BS02-0001,REACHARD,Problèmes d'accessiblité difficiles pour les systèmes à compteurs(2011)
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,General Computer Science ,Logic ,Zeroth-order logic ,vector addition systems ,Intermediate logic ,Intuitionistic logic ,fast-growing complexity ,Upper and lower bounds ,QA76 ,Theoretical Computer Science ,Combinatorics ,Branching (linguistics) ,F.2.2 ,F.4.1 ,Linear temporal logic ,Fragment (logic) ,Reachability ,Computer Science::Logic in Computer Science ,linear logic ,QA ,Autoepistemic logic ,Mathematics ,Propositional variable ,Discrete mathematics ,Second-order logic ,Multiplicative function ,Modal μ-calculus ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.1: Mathematical Logic ,16. Peace & justice ,Linear logic ,Logic in Computer Science (cs.LO) ,Exponential function ,Computational Mathematics ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems ,Affine transformation - Abstract
We study the complexity of reachability problems on branching extensions of vector addition systems, which allows us to derive new non-elementary complexity bounds for fragments and variants of propositional linear logic. We show that provability in the multiplicative exponential fragment is Tower-hard already in the affine case -- and hence non-elementary. We match this lower bound for the full propositional affine linear logic, proving its Tower-completeness. We also show that provability in propositional contractive linear logic is Ackermann-complete., Comment: Fixed Fig. 3 thanks to Hiromi Tanaka
- Published
- 2015
- Full Text
- View/download PDF