1. Bioinspired Ultra Tear-Resistant Elastomer with a Slidable Double-Network Structure.
- Author
-
Feng JF, Chen ZH, Fan ST, Yu LP, Tan M, Liao LG, Li BJ, and Zhang S
- Abstract
Tear resistance is of vital importance in the fabrication and application of synthetic soft materials. However, the paradox of simultaneously improving the tearing energy and elasticity remains a huge challenge for conventional approaches. Here, inspired by the skin, we successfully constructed an extraordinary tear-resistant, superelastic elastomer by the introduction of nanosized polycyclodextrin into the elastomer network to form a slidable interpenetrate double network structure. The tearing energy of the SDEP elastomer is up to 274 KJ/m
2 , which is comparable to metals and alloys and increased more than 100 times compared with the chemically cross-linked elastomer. The fracture strain exceeded 3300%, which is hardly achieved by other materials with high tearing energy. This comprehensive improvement of antitearing and super elasticity property was achieved by (i) a slide ring effect to dissipate energy and blunt a crack tip; (ii) straightening and reorientation of the slidable double network to deflect the advancing of a crack tip; (iii) a double network sharing the load. These results provide a novel strategy to fabricate elastic, tear-resistant soft material, which may contribute to the practical application as tear-resistant flexible electronics and irregular-shaped stretchable devices.- Published
- 2022
- Full Text
- View/download PDF