10 results on '"covalent triazine framework"'
Search Results
2. Bimetallic-Coordinated Covalent Triazine Framework-Derived FeNi Alloy Nanoparticle-Decorated Coral-Like Nanocarbons for Oxygen Electrocatalysis.
- Author
-
Li M, Lv M, Zheng Y, Zhu M, Feng Q, Guan J, Yu X, Shen Y, Hou J, Lu Y, Huang N, and Ye L
- Abstract
It is highly desirable to fabricate transition bimetallic alloy-embedded porous nanocarbons with a unique nanoarchitecture for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in rechargeable zinc-air batteries. In this work, we introduce a template-assisted in situ alloying synthesis of FeNi alloy nanoparticle-decorated coral-like nanocarbons (FeNi-CNCs) as efficient OER/ORR dual-functional electrocatalysts. The present materials are produced through polycondensation of a covalent triazine framework (CTF), the coordination of Ni and Fe ions, and sequential pyrolytic treatment. Through the pyrolysis process, the nanolamellar FeNi-CTF precursors can be facilely converted into FeNi alloy nanoparticle-decorated nanocarbons. These nanocarbons possess a distinctive three-dimensional (3D) coral-like nanostructure, which is favorable for the transport of oxygen and the diffusion of electrolyte. As a result, FeNi-CNC-800 with the highest efficiency exhibited remarkable electrocatalytic performance and great durability. Additionally, it also can be assembled into rechargeable zinc-air batteries that can be assembled in both liquid and solid forms, offering a superior peak power density, large specific capacity, and outstanding reusability during charging/discharging cycles (e.g., 5160 charging-and-discharging cycles at 10 mA cm
-2 for the liquid forms). These traits make it a highly promising option in the burgeoning field of wearable energy conversion.- Published
- 2024
- Full Text
- View/download PDF
3. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs.
- Author
-
Alves Fávaro M, Ditz D, Yang J, Bergwinkl S, Ghosh AC, Stammler M, Lorentz C, Roeser J, Quadrelli EA, Thomas A, Palkovits R, Canivet J, and Wisser FM
- Abstract
Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.
- Published
- 2022
- Full Text
- View/download PDF
4. New Covalent Triazine Framework Rich in Nitrogen and Oxygen as a Host Material for Lithium-Sulfur Batteries.
- Author
-
Gao G, Jia Y, Gao H, Shi W, Yu J, Yang Z, Dong Z, and Zhao Y
- Abstract
Lithium-sulfur (Li-S) batteries have been widely considered as the next-generation energy storage system but hindered by the soluble polysulfide intermediate-induced shuttle effect. Doping heteroatoms was confirmed to enhance the affinity of polysulfide and the carbon host, release the shuttle effect, and improve the battery performance. To enhance the Lewis acidity and reinforce the interaction between polysulfide and the carbon skeleton, a novel covalent triazine framework (CTFO) was designed and fabricated by copolymerizing 2,4,6-triphenoxy- s -triazine and 2,4,6-trichloro-1,3,5-triazine through Friedel-Crafts alkylation. Polymerization led to triazine substitution on the para-position of the phenoxy groups of 2,4,6-triphenoxy-triazine and produced two-dimensional three-connected honeycomb nanosheets. These nanosheets were confirmed to exhibit packing in the AB style through the intralayer π-π interaction to form a three-dimensional layered network with micropores of 0.5 nm. The practical and simulated results manifested the enhanced polysulfide capture capability due to the abundant N and O heteroatoms in CTFO. The unique porous polar network endowed CTFO with improved Li-S battery performance with high Coulombic efficiency, rate capability, and cycling stability. The S@CTFO cathode delivered an initial discharge capacity of 791 mAh g
-1 at 1C and retained a residual capacity of 512 mAh g-1 after 300 charge-discharge cycles with an attenuation rate of 0.117%. The present results confirmed that multiple heteroatom doping enhances the interaction between the porous polar CTF skeleton and polysulfide intermediates to improve the Li-S battery performance.- Published
- 2021
- Full Text
- View/download PDF
5. Ultrasound-Triggered Assembly of Covalent Triazine Framework for Synthesizing Heteroatom-Doped Carbon Nanoflowers Boosting Metal-Free Bifunctional Electrocatalysis.
- Author
-
Zheng Y, Chen S, Zhang KAI, Zhu J, Xu J, Zhang C, and Liu T
- Abstract
The construction of multiple heteroatom-doped porous carbon with unique nanoarchitectures and abundant heteroatom active sites is promising for reversible oxygen-involving electrocatalysis. However, most of the synthetic methods required the use of templates to construct precisely designed nanostructured carbon. Herein, we introduced an ultrasound-triggered route for the synthesis of a piperazine-containing covalent triazine framework (P-CTF). The ultrasonic energy triggered both the polycondensation of monomers and the assembly into a nanoflower-shaped morphology without utilizing any templates. Subsequent carbonization of P-CTF led to the formation of nitrogen, phosphorus, and fluorine tri-doped porous carbon (NPF@CNFs) with a well-maintained nanoflower morphology. The resultant NPF@CNFs showed high electrocatalytic activity and stability toward bifunctional electrolysis, which was better than the commercial Pt/C and IrO
2 electrocatalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. As a further demonstration, employing NPF@CNFs as air electrode materials resulted in an excellent performance of liquid-state and solid-state Zn-air batteries, showing great potentials of the obtained multiple heteroatom-doped porous carbon electrocatalysts for wearable electronics.- Published
- 2021
- Full Text
- View/download PDF
6. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature.
- Author
-
Huang W, Li B, Wu Y, Zhang Y, Zhang W, Chen S, Fu Y, Yan T, and Ma H
- Abstract
Synthesis of solid-state proton-conducting membranes with low activation energy and high proton conductivity under anhydrous conditions is a great challenge. Here, we show a simple and convenient way to prepare covalent triazine framework membranes (CTF-Mx) with acid in situ doping for anhydrous proton conduction in a wide temperature range from subzero to elevated temperature (160 °C). The low proton dissociation energy and continuous hydrogen bond network in CTF-Mx make the membrane achieve high proton conductivity from 1.21×10
-3 S cm-1 (-40 °C) to 2.08×10-2 S cm-1 (160 °C) under anhydrous conditions. Molecular dynamics and proton relaxation time analyses reveal proton hopping at low activation energies with greatly enhanced mobility in the CTF membranes.- Published
- 2021
- Full Text
- View/download PDF
7. Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions.
- Author
-
Jena HS, Krishnaraj C, Parwaiz S, Lecoeuvre F, Schmidt J, Pradhan D, and Van Der Voort P
- Abstract
Defective nitrogen-doped carbon materials have shown a promising application as metal-free electrocatalysts in the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER). However, there are still some challenges in the tuning of metal-free electrocatalysts and in understanding the roles of various nitrogen species in their electrocatalytic performance. Herein, we design a covalent triazine framework (CTF)-based material as an effective metal-free bifunctional electrocatalyst. We chose BINOL-CN (2,2'-dihydroxy-[1,1'-binaphthalene]-6,6'-dicarbonitrile) as both a carbon and a nitrogen source for the fabrication of N-containing CTF-based materials. Four BINOL-CTFs with varying N-functionalities (pyridinic-N/triazine-N, pyrrolic-N, quaternary-N, and pyridine-N-oxide) were successfully obtained. These materials were evaluated in the ORR and the HER in basic and acidic conditions, respectively. The best material has an onset potential of 0.793 V and a half-wave potential of 0.737 V, and it follows first-order kinetics in a 4e
- pathway in the ORR reaction. The same material shows an impressive HER activity with an overpotential of 0.31 V to achieve 10 mA/cm2 and a small Tafel slope of 41 mV/dec, which is comparable to 31 mV/dec for Pt/C, making it a potential bifunctional electrocatalyst. We showed that the ORR and HER reactivity of CTF-based materials depends exclusively on the amount of quaternary-N species and on the available surface area and pore volume. This work highlights the engineering of CTF materials with varying amounts of N species as high-performance bifunctional electrocatalysts.- Published
- 2020
- Full Text
- View/download PDF
8. Triazine-Based Two-Dimensional Organic Polymer for Selective NO 2 Sensing with Excellent Performance.
- Author
-
Yang K, Yuan W, Hua Z, Tang Y, Yin F, and Xia D
- Abstract
Gas sensors with high sensitivity, fast response/recovery, good selectivity, and room-temperature operation are highly desirable for practical use. However, most of the existing gas sensing materials, either conventional metal oxide semiconductors or advanced inorganic two-dimensional (2D) polymers, can hardly satisfy the above requirements. Herein, we demonstrate an organic 2D polymer derived from a covalent triazine framework (CTF), which possesses nanoscale thickness, intrinsic and periodic pore structures, and abundant functional groups with excellent gas sensing performance. The as-prepared triazine-based 2D polymer (T-2DP) exhibits selective recognition to NO
2 with an ultrahigh sensitivity of 452.6 ppm-1 , which outperforms most other 2D nanomaterials and its CTF matrix. The sensing effect is superfast (35-47 s) and fully reversible operated at room temperature. The superior comprehensive gas sensing performance of T-2DP and the underlying mechanism was experimentally studied and further discussed by comparison with that of CTF and widely investigated inorganic 2D polymers including graphene and MXene. As a proof of concept, a flexible NO2 chemiresistor based on T-2DP was fabricated to demonstrate its potential for integration into wearable electronics. The scientific findings in this work may propose a new route for the design of high-performance gas sensing materials on the basis of organic 2D polymers in next-generation wearable electronic devices.- Published
- 2020
- Full Text
- View/download PDF
9. Promoting and Tuning Porosity of Flexible Ether-Linked Phthalazinone-Based Covalent Triazine Frameworks Utilizing Substitution Effect for Effective CO 2 Capture.
- Author
-
Yuan K, Liu C, Zong L, Yu G, Cheng S, Wang J, Weng Z, and Jian X
- Abstract
Five porous ether-linked phthalazinone-based covalent triazine frameworks (PHCTFs) were successfully constructed via ionothermal polymerizations from flexible dicyano monomers containing asymmetric, twisted, and N-heterocyclic phthalazinone structure. All the building blocks could be easily prepared by simple and low-cost aromatic nucleophilic substitution reactions, showing the large-scale application potential of thermal stable phthalazinone structure in constructing porous materials. Generally, the flexible building blocks are avoided to prevent the networks from collapsing in constructing high surface area porous materials. Our experimental results revealed that the introduction of the substituents can effectively decrease the probability of the network interpenetration from the longer struts and the intermolecular/intramolecular intercalation from the increased degree of conformation freedom in the flexible ether-linkage, the BET surface areas of PHCTFs increasing from 676 to 1270 m
2 g-1 . Meanwhile, the effects of introducing different sizes (methyl or phenyl group) and amounts (one or two) of substituents on the porosities of the target polymer networks were also investigated in detail. The high CO2 adsorption capacity of 10.3 wt % (273 K, 1 bar) can be ascribed to the strong affinity of the electron-rich N,O-containing networks with CO2 . Excitingly, PHCTF-5 demonstrates the high CO2 /N2 selectivity up to 138 (273 K, 1 bar), according to the ideal adsorbed solution theory (IAST) for the higher proportion of Vmicro accompanied the electron-rich heteroatoms characteristic. Such high CO2 adsorption capacity and good separation properties are superior to those of many other microporous organic polymers. These properties along with easily up-scalable synthesis make porous PHCTFs promising candidates applied in gas sorption and separation field.- Published
- 2017
- Full Text
- View/download PDF
10. Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification.
- Author
-
Wang Y, Li J, Yang Q, and Zhong C
- Abstract
Ultrathin membranes with intrinsic pores are highly desirable for gas separation applications, because of their controllable pore sizes and homogeneous pore distribution and their intrinsic capacity for high flux. Two-dimensional (2D) covalent organic frameworks (COFs) with layered structures have periodically distributed uniform pores and can be exfoliated into ultrathin nanosheets. As a representative of 2D COFs, a monolayer triazine-based CTF-0 membrane is proposed in this work for effective separation of helium and purification of hydrogen on the basis of first-principles calculations. With the aid of diffusion barrier calculations, it was found that a monolayer CTF-0 membrane can exhibit exceptionally high He and H2 selectivities over Ne, CO2, Ar, N2, CO, and CH4, and the He and H2 permeances are excellent at appropriate temperatures, superior to those of conventional carbon and silica membranes. These observations demonstrate that a monolayer CTF-0 membrane may be potentially useful for helium separation and hydrogen purification.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.