1. Growth and Performance of High-Quality SWCNT Forests on Inconel Foils as Lithium-Ion Battery Anodes.
- Author
-
Moyer-Vanderburgh K, Ma MC, Park SJ, Jue ML, Buchsbaum SF, Wu KJ, Wood M, Ye J, and Fornasiero F
- Abstract
Large-scale production of vertically aligned single-walled carbon nanotubes (VA-SWCNTs) on metal foils promises to enable technological advancements in many fields, from functional composites to energy storage to thermal interfaces. In this work, we demonstrate growth of high-quality (G/D > 6, average diameters ∼ 2-3 nm, densities > 10
12 cm-2 ) VA-SWCNTs on Inconel metal for use as a lithium-ion battery (LIB) anode. Scale-up of SWCNT growth on Inconel 625 to 100 cm2 exhibits nearly invariant CNT structural properties, even when synthesis is performed near atmospheric pressure, and this robustness is attributed to a growth kinetic regime dominated by the carbon precursor diffusion in the bulk gas mixture. SWCNT forests produced on large-area metal substrates at close to atmospheric pressure possess a combination of structural features that are among the best demonstrated so far in the literature for growth on metal foils. Leveraging these achievements for energy applications, we demonstrate a VA-SWCNT LIB anode with capacity >1200 mAh/g at 1.0C and stable cycling beyond 300 cycles. This robust synthesis of high-quality VA-SWCNTs on metal foils presents a promising route toward mass production of high-performance CNT devices for a broad range of applications.- Published
- 2022
- Full Text
- View/download PDF