1. Graphene Phase Modulators Operating in the Transparency Regime
- Author
-
Watson, Hannah F. Y., Ruocco, Alfonso, Tiberi, Matteo, Muench, Jakob E., Balci, Osman, Shinde, Sachin M., Mignuzzi, Sandro, Pantouvaki, Marianna, Van Thourhout, Dries, Sordan, Roman, Tomadin, Andrea, Sorianello, Vito, Romagnoli, Marco, and Ferrari, Andrea C.
- Abstract
Next-generation data networks need to support Tb/s rates. In-phase and quadrature (IQ) modulation combine phase and intensity information to increase the density of encoded data, reduce overall power consumption by minimizing the number of channels, and increase noise tolerance. To reduce errors when decoding the received signal, intersymbol interference must be minimized. This is achieved with pure phase modulation, where the phase of the optical signal is controlled without changing its intensity. Phase modulators are characterized by the voltage required to achieve a π phase shift, Vπ, the device length, L, and their product, VπL. To reduce power consumption, IQ modulators are needed with <1 V drive voltages and compact (sub-cm) dimensions, which translate in VπL< 1Vcm. Si and LiNbO3(LN) IQ modulators do not currently meet these requirements because VπL> 1Vcm. Here, we report a double single-layer graphene (SLG) Mach–Zehnder modulator (MZM) with pure phase modulation in the transparency regime, where optical losses are minimized and remain constant with increasing voltage. Our device has VπL∼ 0.3Vcm, matching state-of-the-art SLG-based MZMs and plasmonic LN MZMs, but with pure phase modulation and low insertion loss (∼5 dB), essential for IQ modulation. Our VπLis ∼5 times lower than the lowest thin-film LN MZMs and ∼3 times lower than the lowest Si MZMs. This enables devices with complementary metal-oxide semiconductor compatible VπL(<1Vcm) and smaller footprint than LN or Si MZMs, improving circuit density and reducing power consumption by 1 order of magnitude.
- Published
- 2024
- Full Text
- View/download PDF