1. Influence of parental sample sizes on the estimating genetic parameters in cultured clam Meretrix meretrix based on factorial mating designs.
- Author
-
Liang, Bingbing, Yue, Xin, Wang, Hongxia, and Liu, Baozhong
- Abstract
The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs. A number of estimators of heritability about important economic traits in many marine mollusks are available in the literature, however very few research have evaluated about the accuracy of genetic parameters estimated with different family structures. Thus, in the present study, the effect of parent sample size for estimating the precision of genetic parameters of four growth traits in clam M. meretrix by factorial designs were analyzed through restricted maximum likelihood (REML) and Bayesian. The results showed that the average estimated heritabilities of growth traits obtained from REML were 0.23-0.32 for 9 and 16 full-sib families and 0.19-0.22 for 25 full-sib families. When using Bayesian inference, the average estimated heritabilities were 0.11-0.12 for 9 and 16 full-sib families and 0.13-0.16 for 25 full-sib families. Compared with REML, Bayesian got lower heritabilities, but still remained at a medium level. When the number of parents increased from 6 to 10, the estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference. Genetic correlations among traits were positive and high and had no significant difference between different sizes of designs. The accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families. Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation of a practical selective breeding program in the clam M. meretrix. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF