79 results on '"Department of Engineering Mechanics"'
Search Results
2. Programming Hydrogen Bonds for Reversible Elastic-Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra-High-Density Energy Conversion and Multiple Sensory Properties.
- Author
-
Guo P, Zhang Z, Qian C, Wang R, Cheng L, Tian Y, Wu H, Zhu S, and Liu A
- Abstract
Smart hydrogels have recently garnered significant attention in the fields of actuators, human-machine interaction, and soft robotics. However, when constructing large-scale actuated systems, they usually exhibit limited actuation forces (≈2 kPa) and actuation speeds. Drawing inspiration from hairspring energy conversion mechanism, an elasticity-plasticity-controllable composite hydrogel (PCTA) with robust contraction capabilities is developed. By precisely manipulating intermolecular and intramolecular hydrogen-bonding interactions, the material's elasticity and plasticity can be programmed to facilitate efficient energy storage and release. The proposed mechanism enables rapid generation of high contraction forces (900 kPa) at ultra-high working densities (0.96 MJ m
-3 ). Molecular dynamics simulations reveal that modifications in the number and nature of hydrogen bonds lead to a distinct elastic-plastic transition in hydrogels. Furthermore, the conductive PCTA hydrogel exhibits multimodal sensing capabilities including stretchable strain sensing with a wide sensing range (1-200%), fast response time (180 ms), and excellent linearity of the output signal. Moreover, it demonstrates exceptional temperature and humidity sensing capabilities with high detection accuracy. The strong actuation power and real-time sensory feedback from the composite hydrogels are expected to inspire novel flexible driving materials and intelligent sensing systems., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
3. Shape Memory Polymers with Patternable Recovery Onset Regulated by Light.
- Author
-
Huang J, Qiu L, Ni C, Chen G, and Zhao Q
- Abstract
Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
4. Tunable and Reversible Adhesive of Liquid Metal Ferrofluid Pillars for Magnetically Actuated Noncontact Transfer Printing.
- Author
-
Jiang J, Li C, Chen C, Shi C, and Song J
- Abstract
Transfer printing techniques based on tunable and reversible adhesives enable the heterogeneous integration of materials in desired layouts and are essential for developing both existing and envisioned electronic systems. Here, a novel tunable and reversible adhesive of liquid metal ferrofluid pillars for developing an efficient magnetically actuated noncontact transfer printing is reported. The liquid metal ferrofluid pillars offer the appealing advantages of gentle contact force by minimizing the preload effect and exceptional shape adaptability by maximizing the interfacial contact area due to their inherent fluidity, thus enabling a reliable damage-free pickup. Moreover, the liquid metal ferrofluid pillars harness the rapid stiffness increase and shape change with the magnetic field, generating an instantaneous ejection force to achieve a receiver-independent noncontact printing. Demonstrations of the adhesive of liquid metal ferrofluid pillars in transfer printing of diverse objects with different shapes, materials and dimensions onto various substrates illustrate its great potential in deterministic assembly., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
5. Bioinspired Flexible Hydrogelation with Programmable Properties for Tactile Sensing.
- Author
-
Wang Y, Geng Q, Lyu H, Sun W, Fan X, Ma K, Wu K, Wang J, Wang Y, Mei D, Guo C, Xiu P, Pan D, and Tao K
- Subjects
- Touch, Polyethylene Glycols chemistry, Humans, Dipeptides chemistry, Phenylalanine chemistry, Phenylalanine analogs & derivatives, Nanofibers chemistry, Nanotubes, Carbon chemistry, Bridged Bicyclo Compounds, Heterocyclic chemistry, Biocompatible Materials chemistry, Polymers chemistry, Hydrogels chemistry, Fluorenes chemistry
- Abstract
Tactile sensing requires integrated detection platforms with distributed and highly sensitive haptic sensing capabilities along with biocompatibility, aiming to replicate the physiological functions of the human skin and empower industrial robotic and prosthetic wearers to detect tactile information. In this regard, short peptide-based self-assembled hydrogels show promising potential to act as bioinspired supramolecular substrates for developing tactile sensors showing biocompatibility and biodegradability. However, the intrinsic difficulty to modulate the mechanical properties severely restricts their extensive employment. Herein, by controlling the self-assembly of 9-fluorenylmethoxycarbonyl-modifid diphenylalanine (Fmoc-FF) through introduction of polyethylene glycol diacrylate (PEGDA), wider nanoribbons are achieved by untwisting from well-established thinner nanofibers, and the mechanical properties of the supramolecular hydrogels can be enhanced 10-fold, supplying bioinspired supramolecular encapsulating substrate for tactile sensing. Furthermore, by doping with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and 9-fluorenylmethoxycarbonyl-modifid 3,4-dihydroxy-l-phenylalanine (Fmoc-DOPA), the Fmoc-FF self-assembled hydrogels can be engineered to be conductive and adhesive, providing bioinspired sensing units and adhesive layer for tactile sensing applications. Therefore, the integration of these modules results in peptide hydrogelation-based tactile sensors, showing high sensitivity and sustainable responses with intrinsic biocompatibility and biodegradability. The findings establish the feasibility of developing programmable peptide self-assembly with adjustable features for tactile sensing applications., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
6. Atomic-Scale Tracking Topological Phase Transition Dynamics of Polar Vortex-Antivortex Pairs.
- Author
-
Zhu R, Zheng S, Li X, Wang T, Tan C, Yu T, Liu Z, Wang X, Li J, Wang J, and Gao P
- Abstract
Non-trivial topological structures, such as vortex-antivortex (V-AV) pairs, have garnered significant attention in the field of condensed matter physics. However, the detailed topological phase transition dynamics of V-AV pairs, encompassing behaviors like self-annihilation, motion, and dissociation, have remained elusive in real space. Here, polar V-AV pairs are employed as a model system, and their transition pathways are tracked with atomic-scale resolution, facilitated by in situ (scanning) transmission electron microscopy and phase field simulations. This investigation reveals that polar vortices and antivortices can stably coexist as bound pairs at room temperature, and their polarization decreases with heating. No dissociation behavior is observed between the V-AV phase at room temperature and the paraelectric phase at high temperature. However, the application of electric fields can promote the approach of vortex and antivortex cores, ultimately leading to their annihilation near the interface. Revealing the transition process mediated by polar V-AV pairs at the atomic scale, particularly the role of polar antivortex, provides new insights into understanding the topological phases of matter and their topological phase transitions. Moreover, the detailed exploration of the dynamics of polar V-AV pairs under thermal and electrical fields lays a solid foundation for their potential applications in electronic devices., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
7. Freestanding Serpentine Silicon Strips with Ultrahigh Stretchability over 300% for Wearable Electronics.
- Author
-
Shi Y, Zhao J, Zhang B, Qin J, Hu X, Cheng Y, Yu J, Jie J, and Zhang X
- Abstract
Well-functionalized electronic materials, such as silicon, in a stretchable format are desirable for high-performance wearable electronics. However, obtaining Si materials that meet the required stretchability of over 100% for wearable applications remains a significant challenge. Herein, a rational design strategy is proposed to achieve freestanding serpentine Si strips (FS-Si strips) with ultrahigh stretchability, fulfilling wearable requirements. The self-supporting feature makes the strips get rid of excessive constraints from substrates and enables them to deform with the minimum strain energy. Micrometer-scale thicknesses enhance robustness, and large diameter-to-width ratios effectively reduce strain concentration. Consequently, the FS-Si strips with the optimum design could withstand 300% stretch, bending, and torsion without fracturing, even under rough manual operation. They also exhibit excellent stability and durability over 50,000 cycles of 100% stretching cycles. For wearable applications, the FS-Si strips can maintain conformal contact with the skin and have a maximum stretchability of 120%. Moreover, they are electrically insensitive to large deformations, which ensure signal stability during their daily use. Combined with mature processing techniques and the excellent semiconductor properties of Si, FS-Si strips are promising core stretchable electronic materials for wearable electronics., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
8. Mitigating the Overheat of Stretchable Electronic Devices Via High-Enthalpy Thermal Dissipation of Hydrogel Encapsulation.
- Author
-
Cao C, Ji S, Jiang Y, Su J, Xia H, Li H, Tian C, Wong YJ, Feng X, and Chen X
- Abstract
The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
9. Skin-Inspired All-Natural Biogel for Bioadhesive Interface.
- Author
-
Lan L, Ping J, Li H, Wang C, Li G, Song J, and Ying Y
- Subjects
- Animals, Biocompatible Materials chemistry, Electric Conductivity, Water chemistry, Biomimetic Materials chemistry, Pyrrolidinones chemistry, Humans, Hydrogels chemistry, Gelatin chemistry, Skin metabolism
- Abstract
Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
10. Designing Ultratough Single-Network Hydrogels with Centimeter-Scale Fractocohesive Lengths via Inelastic Crack Blunting.
- Author
-
Ma J, Zhang X, Yin D, Cai Y, Shen Z, Sheng Z, Bai J, Qu S, Zhu S, and Jia Z
- Abstract
Fractocohesive length, defined as the ratio of fracture toughness to work of fracture, measures the sensitivity of materials to fracture in the presence of flaws. The larger the fractocohesive length, the more flaw-tolerant and crack-resistant the hydrogel. For synthetic soft materials, the fractocohesive length is short, often on the scale of 1 mm. Here, highly flaw-insensitive (HFI) single-network hydrogels containing an entangled inhomogeneous polymer network of widely distributed chain lengths are designed. The HFI hydrogels demonstrate a centimeter-scale fractocohesive length of 2.21 cm, which is the highest ever recorded for synthetic hydrogels, and an unprecedented fracture toughness of ≈13 300 J m
-2 . The uncommon flaw insensitivity results from the inelastic crack blunting inherent to the highly inhomogeneous network. When the HFI hydrogel is stretched, a large number of short chains break while coiled long chains can disentangle, unwind, and straighten, producing large inelastic deformation that substantially blunts the crack tip in a plastic manner, thereby deconcentrating crack-tip stresses and blocking crack extension. The flaw-insensitive design strategy is applicable to various hydrogels such as polyacrylamide and poly(N,N-dimethylacrylamide) hydrogels and enables the development of HFI soft composites., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
11. Bioresorbable Multilayer Organic-Inorganic Films for Bioelectronic Systems.
- Author
-
Hu Z, Guo H, An D, Wu M, Kaura A, Oh H, Wang Y, Zhao M, Li S, Yang Q, Ji X, Li S, Wang B, Yoo D, Tran P, Ghoreishi-Haack N, Kozorovitskiy Y, Huang Y, Li R, and Rogers JA
- Subjects
- Absorbable Implants, Water chemistry, Wireless Technology, Biocompatible Materials chemistry, Electronics
- Abstract
Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure., (© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
12. Repeatedly Programmable Liquid Crystal Dielectric Elastomer with Multimodal Actuation.
- Author
-
Zhang C, Chen G, Zhang K, Jin B, Zhao Q, and Xie T
- Abstract
Dielectric elastomers (DEs) are actuatable under an electric field, whose large strain and fast response speed compare favorably with natural muscles. However, the actuation of DE-based devices is generally limited to a single mode and cannot be reconfigured after fabrication, which pales in comparison to biological counterparts given the ability to alter actuation modes according to external conditions. To address this, liquid crystal dielectric elastomers (LC-DEs) that can alter the dielectric actuation modes based on the thermally triggered shape-changing are prepared. Specifically, the two shapes through the LC phase transition possess different bending stiffness, which leads to distinct actuation modes after an electric field is applied. Moreover, the two shapes can be individually programmed/reprogrammed, that is, the one before the transition is regulated through force-directed solvent evaporation and the one after the transition is via bond exchange-enabled stress relaxation. As such, the multimodal dielectric actuation behaviors upon temperature change can be readily diversified. Meanwhile, the space charge mechanism endows LC-DEs with the significantly reduced driving e-field (8 V µm
-1 ) and bidirectional actuation manners. It is believed this unique adaptivity in the actuation modes under a low electric field shall offer versatile designs for practical soft robots., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
13. Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems.
- Author
-
Hu Z, Zhao J, Guo H, Li R, Wu M, Shen J, Wang Y, Qiao Z, Xu Y, Haugstad G, An D, Xie Z, Kandela I, Nandoliya KR, Chen Y, Yu Y, Yuan Q, Hou J, Deng Y, AlDubayan AH, Yang Q, Zeng L, Lu D, Koo J, Bai W, Song E, Yao S, Wolverton C, Huang Y, and Rogers JA
- Subjects
- Water chemistry, Absorbable Implants, Electronics
- Abstract
Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements., (© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
14. A High-Q Electric-Mechano-Magnetic Coupled Resonator for ELF/SLF Cross-Medium Magnetic Communication.
- Author
-
Chang J, He Z, Xu S, Zheng X, Peng W, Ci P, Wang B, Zhang C, and Dong S
- Abstract
Extremely/super low frequency (ELF/SLF) electromagnetic wave can effectively propagate in the harsh cross-medium environment where a high-frequency electromagnetic wave cannot pass due to the fast decay. For efficiently transmitting a strong ELF/SLF radiation signal, the traditional electromagnetic antenna requires a super-large loop (>10 km). To address this issue, in this work, a piezoelectric ceramic/ferromagnetic heterogeneous structured, cantilever beam-type electric-mechano-magnetic coupled resonator at only centimeter scale for ELF/SLF cross-medium magnetic communication is reported. Through designing hard-soft hybrid step-stiffness elastic beam, the resonator exhibits a much higher quality factor Q (≈240) for ELF/SLF magnetic field transmitting, which is one to five orders of magnitude higher than those of previously reported mechanical antennas and loop coil antennas. Moreover, the resonator exhibits a 5000 times higher magnetic field emitting efficiency compared to a conventional loop coil antenna in ELF/SLF band. It also demonstrates a 200% increase in magnetic field emitting capacity compared to existing piezoelectric-driven antennas. In addition, an ASK+PSK modulation method is proposed for suppressing relaxation time of the resonator, and a reduction in the relaxation time by 80% is observed. Furthermore, an air-seawater cross-medium magnetic field communication is successful demonstrated, indicating its potential as portable, high-efficient antenna for underwater and underground communications., (© 2023 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
15. A Soft, Adhesive Self-Healing Naked-Eye Strain/Stress Visualization Patch.
- Author
-
Zhao Z, Liu J, Wu M, Yao X, Wang H, Liu X, He Z, and Song X
- Abstract
Learning about the strain/stress distribution in a material is essential to achieve its mechanical stability and proper functionality. Conventional techniques such as universal testing machines only apply to static samples with standardized geometry in laboratory environment. Soft mechanical sensors based on stretchable conductors, carbon-filled composites, or conductive gels possess better adaptability, but still face challenges from complicated fabrication process, dependence on extra readout device, and limited strain/stress mapping ability. Inspired by the camouflage mechanism of cuttlefish and chameleons, here an innovative responsive hydrogel containing light-scattering "mechano-iridophores" is developed. Force induced reversible phase separation manipulates the dynamic generation of mechano-iridophores, serving as optical indicators of local deformation. Patch-shaped mechanical sensors made from the responsive hydrogel feature fast response time (<0.4 s), high spatial resolution (≈100 µm), and wide dynamic ranges (e.g., 10-150% strain). The intrinsic adhesiveness and self-healing material capability of sensing patches also ensure their excellent applicability and robustness. This combination of chemical and optical properties allows strain/stress distributions in target samples to be directly identified by naked eyes or smartphone apps, which is not yet achieved. The great advantages above are ideal for developing the next-generation mechanical sensors toward material studies, damage diagnosis, risk prediction, and smart devices., (© 2023 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
16. Split-Type Magnetic Soft Tactile Sensor with 3D Force Decoupling.
- Author
-
Dai H, Zhang C, Pan C, Hu H, Ji K, Sun H, Lyu C, Tang D, Li T, Fu J, and Zhao P
- Subjects
- Animals, Humans, Skin, Water, Magnetic Phenomena, Touch, Mechanical Phenomena
- Abstract
Tactile sensory organs for sensing 3D force, such as human skin and fish lateral lines, are indispensable for organisms. With their sensory properties enhanced by layered structures, typical sensory organs can achieve excellent perception as well as protection under frequent mechanical contact. Here, inspired by these layered structures, a split-type magnetic soft tactile sensor with wireless 3D force sensing and a high accuracy (1.33%) fabricated by developing a centripetal magnetization arrangement and theoretical decoupling model is introduced. The 3D force decoupling capability enables it to achieve a perception close to that of human skin in multiple dimensions without complex calibration. Benefiting from the 3D force decoupling capability and split design with a long effective distance (>20 mm), several sensors are assembled in air and water to achieve delicate robotic operation and water flow-based navigation with an offset <1.03%, illustrating the extensive potential of magnetic tactile sensors in flexible electronics, human-machine interactions, and bionic robots., (© 2023 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
17. An Antidehydration Hydrogel Based on Zwitterionic Oligomers for Bioelectronic Interfacing.
- Author
-
He K, Cai P, Ji S, Tang Z, Fang Z, Li W, Yu J, Su J, Luo Y, Zhang F, Wang T, Wang M, Wan C, Pan L, Ji B, Li D, and Chen X
- Subjects
- Humans, Skin, Electric Conductivity, Salts, Hydrogels, Dehydration
- Abstract
Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices., (© 2023 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
18. In Situ Twistronics: A New Platform Based on Superlubricity.
- Author
-
Liu J, Yang X, Fang H, Yan W, Ouyang W, and Liu Z
- Abstract
Twistronics, an emerging field focused on exploring the unique electrical properties induced by twist interface in graphene multilayers, has garnered significant attention in recent years. The general manipulation of twist angle depends on the assembly of van der Waals (vdW) layered materials, which has led to the discovery of unconventional superconductivity, ferroelectricity, and nonlinear optics, thereby expanding the realm of twistronics. Recently, in situ tuning of interlayer conductivity in vdW layered materials has been achieved based on scanning probe microscope. In this Perspective, the advancements in in situ twistronics are focused on by reviewing the state-of-the-art in situ manipulating technology, discussing the underlying mechanism based on the concept of structural superlubricity, and exploiting the real-time twistronic tests under scanning electron microscope (SEM). It is shown that the real-time manipulation under SEM allows for visualizing and monitoring the interface status during in situ twistronic testing. By harnessing the unique tribological properties of vdW layered materials, this novel platform not only enhances the fabrication of twistronic devices but also facilitates the fundamental understanding of interface phenomena in vdW layered materials. Moreover, this platform holds great promise for the application of twistronic-mechanical systems, providing avenues for the integration of twistronics into various mechanical frameworks., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
19. Nanoengineered Design of inside-Heating Hot Nanoreactor Surrounded by Cool Environment for Selective Hydrogenations.
- Author
-
Zhang RP, He B, Yang RP, Zhang YX, Li WC, Zhu LH, Wang SJ, Wang DQ, Liu X, Chen L, Wu CW, and Lu AH
- Abstract
Catalysts with designable intelligent nanostructure may potentially drive the changes in chemical reaction techniques. Herein, a multi-function integrating nanocatalyst, Pt-containing magnetic yolk-shell carbonaceous structure, having catalysis function, microenvironment heating, thermal insulation, and elevated pressure into a whole is designed, which induces selective hydrogenation within heating-constrained nanoreactors surrounded by ambient environment. As a demonstration, carbonyl of α, β-unsaturated aldehydes/ketones are selectively hydrogenated to unsaturated alcohols with a >98% selectivity at a nearly complete conversion under mild conditions of 40 °C and 3 bar instead of harsh requirements of 120 °C and 30 bar. It is creatively demonstrated that the locally increased temperature and endogenous pressure (estimated as ≈120 °C, 9.7 bar) in the nano-sized space greatly facilitate the reaction kinetics under an alternating magnetic field. The outward-diffused products to the "cool environment" remain thermodynamically stable, avoiding the over-hydrogenation that often occurs under constantly heated conditions of 120 °C. Regulation of the electronic state of Pt by sulfur doping of carbon allows selective chemical adsorption of the CO group and consequently leads to selective hydrogenation. It is expected that such a multi-function integrated catalyst provides an ideal platform for precisely operating a variety of organic liquid-phase transformations under mild reaction conditions., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
20. Ferroelectric Modulation in Flexible Lead-Free Perovskite Schottky Direct-Current Nanogenerator for Capsule-Like Magnetic Suspension Sensor.
- Author
-
Jiang F, Thangavel G, Zhou X, Adit G, Fu H, Lv J, Zhan L, Zhang Y, and Lee PS
- Abstract
The tribovoltaic nanogenerator (TVNG), a promising semiconductor energy technology, displays outstanding advantages such as low matching impedance and continuous direct-current output. However, the lack of controllable and stable performance modulation strategies is still a major bottleneck that impedes further practical applications of TVNG. Herein, by leveraging the ferroelectricity-enhanced mechanism and the control of interfacial energy band bending, a lead-free perovskite-based (3,3-difluorocyclobutylammonium)
2 CuCl4 ((DF-CBA)2 CuCl4 )/Al Schottky junction TVNG is constructed. The multiaxial ferroelectricity of (DF-CBA)2 CuCl4 enables an excellent surface charge modulating capacity, realizing a high work function regulation of ≈0.7 eV and over 15-fold current regulation (from 6 to 93 µA) via an electrical poling control. The controllable electrical poling leads to elevated work function difference between the Al electrode and (DF-CBA)2 CuCl4 compared to traditional semiconductors and halide perovskites, which creates a stronger built-in electric field at the Schottky interface to enhance the electrical output. This TVNG device exhibits outstanding flexibility and long-term stability (>20 000 cycles) that can endure extreme mechanical deformations, and can also be used in a capsule-like magnetic suspension device capable of detecting vibration and weights of different objects as well as harvesting energy from human motions and water waves., (© 2023 Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
21. Single-Nanoparticle-Based Nanomachining for Fabrication of a Uniform Nanochannel Sensor.
- Author
-
Miao L, Huang B, Fang H, Chai J, Liu Z, and Zhai Y
- Abstract
The structure of nanomaterials and nanodevices determines their functionality and applications. A single uniform nanochannel with a high aspect ratio is an attractive structure due to its unique rigid structures, easy preparation, and diverse pore structures and it holds significant promising importance in fields such as nanopore sensing and nanomanufacturing. Although the metal-nanoparticle-assistant silicon etching technique can produce uniform nanochannels, however, the fabrication of single through nanochannels remains a challenge thus far. A simple and versatile strategy is developed that allows for the retention of individual gold nanoparticle on a substrate, enabling single-nanoparticle nanomachining. This method involves three steps: the formation of a carbon protective layer on individual nanoparticles via electron-beam irradiation, selective removal of unprotected nanoparticles using a corrosive agent, and subsequent elimination of the carbon layer. This enables the fabrication of a single submillimeter-long uniform through nanochannel in the silicon wafer, which can be employed for nanopore sensing and shape-based nanoparticle distinguishing. The developed method can also facilitate single-nanoparticle studies and nanomachining for a broad application in materials science, electronics, micro/nano-optics, and catalysis., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
22. Enhancing Prosthetic Control through High-Fidelity Myoelectric Mapping with Molecular Anchoring Technology.
- Author
-
Pan L, Wang H, Huang P, Wu X, Tang Z, Jiang Y, Ji S, Cao J, Ji B, Li G, Li D, Wang Z, and Chen X
- Subjects
- Humans, Electromyography methods, Muscles, Muscle Contraction physiology, Artificial Limbs, Amputees
- Abstract
Myoelectric control utilizes electrical signals generated from the voluntary contraction of remaining muscles in an amputee's stump to operate a prosthesis. Precise and agile control requires low-level myoelectric signals (below 10% of maximum voluntary contraction, MVC) from weak muscle contractions such as phantom finger or wrist movements, but imbalanced calcium concentration in atrophic skin can distort the signals. This is due to poor ionic-electronic coupling between skin and electrode, which often causes excessive muscle contraction, fatigue, and discomfort during delicate tasks. To overcome this challenge, a new strategy called molecular anchoring is developed to drive hydrophobic molecular effectively interact with and embed into stratum corneum for high coupling regions between ionic fluxes and electronic currents. The use of hydrophobic poly(N-vinyl caprolactam) gel has resulted in an interface impedance of 20 kΩ, which is 1/100 of a commercial acrylic-based electrode, allowing the detection of ultralow myoelectric signals (≈1.5% MVC) that approach human limits. With this molecular anchoring technology, amputees operate a prosthesis with greater dexterity, as phantom finger and wrist movements are predicted with 97.6% accuracy. This strategy provides the potential for a comfortable human-machine interface when amputees accomplish day-to-day tasks through precise and dexterous myoelectric control., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
23. Unraveling Thermal Transport Correlated with Atomistic Structures in Amorphous Gallium Oxide via Machine Learning Combined with Experiments.
- Author
-
Liu Y, Liang H, Yang L, Yang G, Yang H, Song S, Mei Z, Csányi G, and Cao B
- Abstract
Thermal transport properties of amorphous materials are crucial for their emerging applications in energy and electronic devices. However, understanding and controlling thermal transport in disordered materials remains an outstanding challenge, owing to the intrinsic limitations of computational techniques and the lack of physically intuitive descriptors for complex atomistic structures. Here, it is shown how combining machine-learning-based models and experimental observations can help to accurately describe realistic structures, thermal transport properties, and structure-property maps for disordered materials, which is illustrated by a practical application on gallium oxide. First, the experimental evidence is reported to demonstrate that machine-learning interatomic potentials, generated in a self-guided fashion with minimum quantum-mechanical computations, enable the accurate modeling of amorphous gallium oxide and its thermal transport properties. The atomistic simulations then reveal the microscopic changes in the short-range and medium-range order with density and elucidate how these changes can reduce localization modes and enhance coherences' contribution to heat transport. Finally, a physics-inspired structural descriptor for disordered phases is proposed, with which the underlying relationship between structures and thermal conductivities is predicted in a linear form. This work may shed light on the future accelerated exploration of thermal transport properties and mechanisms in disordered functional materials., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
24. Organic Persistent RTP Crystals: From Brittle to Flexible by Tunable Self-Partitioned Molecular Packing.
- Author
-
Huang A, Fan Y, Wang K, Wang Z, Wang X, Chang K, Gao Y, Chen M, Li Q, and Li Z
- Abstract
Aiming to solve the trade-off of "room-temperature phosphorescence (RTP)-flexibility" in principle, organic RTP crystals with elastic/plastic deformation are realized. These properties are mainly due to the divisional aggregation structures of aromatics and alkoxy chains, and can be modulated by the controllable molecular configurations. The longest RTP lifetime of 972.3 ms is achieved as the highest record for organic flexible crystals. Plastic crystals with persistent RTP are realized, which can be applied into biomedical optical technologies by afterglow delivery. Moreover, the relationship among elastic/plastic deformation, RTP property, and aggregated structures is established. The elastic/plastic deformation is mainly determined by the difference of interaction energies from the aromatics and the alkoxy chains. For the BP-OR series with twisted configurations, the alkoxy chain with the middle length is favorable for the RTP property, while the strength of the π-π coupling is the cruical factor to the RTP property of the Xan-OR series with planar skeletons. A new way to promote the development of flexible RTP crystals, by modulation of aggregated structures as well as rational distribution of intermolecular interactions, is explored., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
25. Light-Driven Conversion of Silicon Nitride Nanopore to Nanonet for Single-Protein Trapping Analysis.
- Author
-
Li J, Huang B, Wang Y, Li A, Wang Y, Pan Y, Chai J, Liu Z, and Zhai Y
- Subjects
- Silicon Compounds chemistry, Nanotechnology, Nanopores
- Abstract
The single-molecule technique for investigation of an unlabeled protein in solution is very attractive but with great challenges. Nanopore sensing as a label-free tool can be used for collecting the structural information of individual proteins, but currently offers only limited capabilities due to the fast translocation of the target. Here, a reliable and facile method is developed to convert the silicon nitride nanopore to a stable nanonet platform for single-entity sensing by electrophoretic or electroosmotic trapping. A nanonet is fabricated based on a material reorganization process caused by electron-beam and light-irradiation treatment. Using protein molecules as a model, it is revealed that the solid-state nanonet can produce collision and trapping flipping signals of the protein, which provides more structural information than traditional nanopore sensing. More importantly, thanks to the excellent stability of the solid-state silicon nitride nanonet, it is demonstrated that the ultraviolet-light-irradiation-induced structural-change process of an individual protein can be captured. The developed nanonet supplies a robust platform for single-entity studies but is not limited to proteins., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
26. Mechanical Janus Structures by Soft-Hard Material Integration.
- Author
-
Zhang H, Yang W, Liu Q, Gao Y, Yue Z, and Xu B
- Abstract
Engineering Janus structures that possess anisotropic features in functions have attracted growing attention for a wide range of applications in sensors, catalysis, and biomedicine, and are yet usually designed at the nanoscale with distinct physical or chemical functionalities in their opposite sides. Inspired by the seamless integration of soft and hard materials in biological structures, here a mechanical Janus structure composed of soft and hard materials with a dramatic difference in mechanical properties at an additively manufacturable macroscale is presented. In the combination of extensive experimental, theoretical, and computational studies, the design principle of soft-hard materials integrated mechanical Janus structures is established and their unique rotation mechanism is addressed. The systematic studies of assembling the Janus structure units into superstructures with well-ordered organizations by programming the local rotations are further shown, providing a direct route of designing superstructures by leveraging mechanical Janus structures with unique soft-hard material integration. Applications are conducted to demonstrate the features and functionalities of assembled superstructures with local ordered organizations in regulating and filtering acoustic wave propagations, thereby providing exemplification applications of mechanical Janus design in functional structures and devices., (© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
27. Dielectric Polymer with Designable Large Motion under Low Electric Field.
- Author
-
Zhang C, Jin B, Cao X, Chen Z, Miao W, Yang X, Luo Y, Li T, and Xie T
- Abstract
Dielectric elastomers (DEs) can demonstrate fast and large in-plane expansion/contraction due to electric field (e-field)-induced Maxwell stress. For robotic applications, it is often necessary that the in-plane actuation is converted into out-of-plane motions with mechanical frames. Despite their performance appeal, their high driving e-field (20-100 V µm
-1 ) demands bulky power accessories and severely compromises their durability. Here, a dielectric polymer that can be programmed into diverse motions actuated under a low e-field (2-10 V µm-1 ) is reported. The material is a crystalline dynamic covalent network that can be reconfigured into arbitrary 3D geometries. This gives rise to a geometric effect that markedly amplifies the actuation, leading to designable large motions when the dielectric polymer is heated above its melting temperature to become a DE. Additionally, the crystallization transition enables dynamic multimodal motions and active deployability. These attributes result in unique design versatility for soft robots., (© 2022 Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
28. Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates.
- Author
-
Lyu B, Chen J, Lou S, Li C, Qiu L, Ouyang W, Xie J, Mitchell I, Wu T, Deng A, Hu C, Zhou X, Shen P, Ma S, Wu Z, Watanabe K, Taniguchi T, Wang X, Liang Q, Jia J, Urbakh M, Hod O, Ding F, Wang S, and Shi Z
- Abstract
Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
29. More Powerful Twistron Carbon Nanotube Yarn Mechanical Energy Harvesters.
- Author
-
Wang Z, Mun TJ, Machado FM, Moon JH, Fang S, Aliev AE, Zhang M, Cai W, Mu J, Hyeon JS, Park JW, Conlin P, Cho K, Gao E, Wan G, Huynh C, Zakhidov AA, Kim SJ, and Baughman RH
- Abstract
Stretching a coiled carbon nanotube (CNT) yarn can provide large, reversible electrochemical capacitance changes, which convert mechanical energy to electricity. Here, it is shown that the performance of these "twistron" harvesters can be increased by optimizing the alignment of precursor CNT forests, plastically stretching the precursor twisted yarn, applying much higher tensile loads during precoiling twist than for coiling, using electrothermal pulse annealing under tension, and incorporating reduced graphene oxide nanoplates. The peak output power for a 1 and a 30 Hz sinusoidal deformation are 0.73 and 3.19 kW kg
-1 , respectively, which are 24- and 13-fold that of previous twistron harvesters at these respective frequencies. This performance at 30 Hz is over 12-fold that of other prior-art mechanical energy harvesters for frequencies between 0.1 and 600 Hz. The maximum energy conversion efficiency is 7.2-fold that for previous twistrons. Twistron anode and cathode yarn arrays are stretched 180° out-of-phase by locating them in the negative and positive compressibility directions of hinged wine-rack frames, thereby doubling the output voltage and reducing the input mechanical energy., (© 2022 Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
30. Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism.
- Author
-
Chen G, Jin B, Shi Y, Zhao Q, Shen Y, and Xie T
- Abstract
Realization of muscle-like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post-synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual-phase LCE network is designed and synthesized with a crystalline melting transition above a liquid crystalline transition. The crystalline phase can serve as an "alignment frame" to fix any mechanical deformation via a shape memory mechanism, leading to corresponding mesogen alignment in the liquid crystalline phase. The alignment can be erased by melting, which can be the starting point for reprogramming. This strategy that relies on a physical shape memory transition for mesogen alignment permits repeated reprogramming in a timescale of seconds, in stark contrast to typical methods. It further leads to unusual versatility in designing 3D printed LCE with unlimited programmable actuation modes., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
31. Stretchable, Breathable, and Stable Lead-Free Perovskite/Polymer Nanofiber Composite for Hybrid Triboelectric and Piezoelectric Energy Harvesting.
- Author
-
Jiang F, Zhou X, Lv J, Chen J, Chen J, Kongcharoen H, Zhang Y, and Lee PS
- Abstract
Halide-perovskite-based mechanical energy harvesters display excellent electrical output due to their unique ferroelectricity and dielectricity. However, their high toxicity and moisture sensitivity impede their practical applications. Herein, a stretchable, breathable, and stable nanofiber composite (LPPS-NFC) is fabricated through electrospinning of lead-free perovskite/poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and styrene-ethylene-butylene-styrene (SEBS). The Cs
3 Bi2 Br9 perovskites serve as efficient electron acceptors and local nucleating agents for the crystallization of polymer chains, thereby enhancing the electron-trapping capacity and polar crystalline phase in LPPS-NFC. The excellent energy level matching between Cs3 Bi2 Br9 and PVDF-HFP boosts the electron transfer efficiency and reduces the charge loss, thereby promoting the electron-trapping process. Consequently, this LPPS-NFC-based energy harvester displays an excellent electrical output (400 V, 1.63 µA cm-2 , and 2.34 W m-2 ), setting a record of the output voltage among halide-perovskite-based nanogenerators. The LPPS-NFC also exhibits excellent stretchability, waterproofness, and breathability, enabling the fabrication of robust wearable devices that convert mechanical energy from different biomechanical motions into electrical power to drive common electronic devices. The LPPS-NFC-based energy harvesters also endure extreme mechanical deformations (washing, folding, and crumpling) without performance degradation, and maintain stable electrical output up to 5 months, demonstrating their promising potential for use as smart textiles and wearable power sources., (© 2022 Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
32. A Solution-Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates.
- Author
-
Lin C, Li Y, Chi C, Kwon YS, Huang J, Wu Z, Zheng J, Liu G, Tso CY, Chao CYH, and Huang B
- Abstract
Daytime radiative cooling provides an eco-friendly solution to space cooling with zero energy consumption. Despite significant advances, most state-of-the-art radiative coolers show broadband infrared emission with low spectral selectivity, which limits their cooling temperatures, especially in hot humid regions. Here, an all-inorganic narrowband emitter comprising a solution-derived SiO
x Ny layer sandwiched between a reflective substrate and a self-assembly monolayer of SiO2 microspheres is reported. It shows a high and diffusive solar reflectance (96.4%) and strong infrared-selective emittance (94.6%) with superior spectral selectivity (1.46). Remarkable subambient cooling of up to 5 °C in autumn and 2.5 °C in summer are achieved under high humidity without any solar shading or convection cover at noontime in a subtropical coastal city, Hong Kong. Owing to the all-inorganic hydrophobic structure, the emitter shows outstanding resistance to ultraviolet and water in long-term durability tests. The scalable-solution-based fabrication renders this stable high-performance emitter promising for large-scale deployment in various climates., (© 2022 Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
33. Mechanically Guided Hierarchical Assembly of 3D Mesostructures.
- Author
-
Zhao H, Cheng X, Wu C, Liu TL, Zhao Q, Li S, Ni X, Yao S, Han M, Huang Y, Zhang Y, and Rogers JA
- Abstract
3D, hierarchical micro/nanostructures formed with advanced functional materials are of growing interest due to their broad potential utility in electronics, robotics, battery technology, and biomedical engineering. Among various strategies in 3D micro/nanofabrication, a set of methods based on compressive buckling offers wide-ranging material compatibility, fabrication scalability, and precise process control. Previously reports on this type of approach rely on a single, planar prestretched elastomeric platform to transform thin-film precursors with 2D layouts into 3D architectures. The simple planar configuration of bonding sites between these precursors and their assembly substrates prevents the realization of certain types of complex 3D geometries. In this paper, a set of hierarchical assembly concepts is reported that leverage multiple layers of prestretched elastomeric substrates to induce not only compressive buckling of 2D precursors bonded to them but also of themselves, thereby creating 3D mesostructures mounted at multiple levels of 3D frameworks with complex, elaborate configurations. Control over strains used in these processes provides reversible access to multiple different 3D layouts in a given structure. Examples to demonstrate these ideas through both experimental and computational results span vertically aligned helices to closed 3D cages, selected for their relevance to 3D conformal bio-interfaces and multifunctional microsystems., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
34. Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction.
- Author
-
Liu S, Shen Y, Zhang Y, Cui B, Xi S, Zhang J, Xu L, Zhu S, Chen Y, Deng Y, and Hu W
- Abstract
Crystal structure engineering of nanomaterials is crucial for the design of electrocatalysts. Inducing dislocations is an efficient approach to generate strain effects in nanomaterials to optimize the crystal and electronic structures and improve the catalytic properties. However, it is almost impossible to produce and retain dislocations in commercial mainstream catalysts, such as single metal platinum (Pt) catalysts. In this work, a non-equilibrium high-temperature (>1400 K) thermal-shock method is reported to induce rich dislocations in Pt nanocrystals (Dr-Pt). The method is performed in an extreme environment (≈77 K) created by liquid nitrogen. The dislocations induced within milliseconds by thermal and structural stress during the crystallization process are kinetically frozen at an ultrafast cooling rate. The high-energy surface structures with dislocation-induced strain effects can prevent surface restructuring during catalysis. The findings indicate that a novel extreme environmental high-temperature thermal-shock method can successfully introduce rich dislocations in Pt nanoparticles and significantly boost its hydrogen evolution reaction performance., (© 2021 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
35. Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer.
- Author
-
Fang M, Liu T, Xu Y, Jin B, Zheng N, Zhang Y, Zhao Q, Jia Z, and Xie T
- Abstract
The muscle-like activities of liquid crystalline elastomers (LCEs) offer great potential for designing future soft machines. Their motion complexity, however, relies on inflexible and cumbersome mesogen alignment techniques. Here, a digital photocuring method for ultrafast template-free fabrication of LCE artificial muscles capable of designable complex motions is reported. This method utilizes the intrinsic light attenuation in the through-plane direction to create mesogen alignment for reversible bending action. To turn this simple actuation into complex motions, the principles of muscles are borrowed which realize diverse motions through the cooperative actions of otherwise simple contraction/expansion of individual muscle bundles. Specifically, the spatiotemporal digital light is utilized to design LCE architectures composed of strategically arranged bending modules. As such, LCE capable of highly designable motions can be fabricated within 25 s light curing without employing any physical alignment templates, which offers an attractive option toward designing functionally diverse soft machines., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
36. Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration.
- Author
-
Wu J, Yao S, Zhang H, Man W, Bai Z, Zhang F, Wang X, Fang D, and Zhang Y
- Subjects
- Animals, Bandages, Biocompatible Materials pharmacology, Cell Line, Cell Survival drug effects, Male, Rats, Rats, Sprague-Dawley, Temperature, Biocompatible Materials chemistry, Elastomers chemistry, Liquid Crystals chemistry, Regeneration drug effects, Skin pathology
- Abstract
Liquid crystal elastomers (LCEs) are a class of soft active materials of increasing interest, because of their excellent actuation and optical performances. While LCEs show biomimetic mechanical properties (e.g., elastic modulus and strength) that can be matched with those of soft biological tissues, their biointegrated applications have been rarely explored, in part, due to their high actuation temperatures (typically above 60 °C) and low biaxial actuation performances (e.g., actuation strain typically below 10%). Here, unique mechanics-guided designs and fabrication schemes of LCE metamaterials are developed that allow access to unprecedented biaxial actuation strain (-53%) and biaxial coefficient of thermal expansion (-33 125 ppm K
-1 ), significantly surpassing those (e.g., -20% and -5950 ppm K-1 ) reported previously. A low-temperature synthesis method with use of optimized composition ratios enables LCE metamaterials to offer reasonably high actuation stresses/strains at a substantially reduced actuation temperature (46 °C). Such biocompatible LCE metamaterials are integrated with medical dressing to develop a breathable, shrinkable, hemostatic patch as a means of noninvasive treatment. In vivo animal experiments of skin repair with both round and cross-shaped wounds demonstrate advantages of the hemostatic patch over conventional strategies (e.g., medical dressing and suturing) in accelerating skin regeneration, while avoiding scar and keloid generation., (© 2021 Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
37. Skin-Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit.
- Author
-
Kwak SS, Yoo S, Avila R, Chung HU, Jeong H, Liu C, Vogl JL, Kim J, Yoon HJ, Park Y, Ryu H, Lee G, Kim J, Koo J, Oh YS, Kim S, Xu S, Zhao Z, Xie Z, Huang Y, and Rogers JA
- Abstract
Continuous monitoring of vital signs is an essential aspect of operations in neonatal and pediatric intensive care units (NICUs and PICUs), of particular importance to extremely premature and/or critically ill patients. Current approaches require multiple sensors taped to the skin and connected via hard-wired interfaces to external data acquisition electronics. The adhesives can cause iatrogenic injuries to fragile, underdeveloped skin, and the wires can complicate even the most routine tasks in patient care. Here, materials strategies and design concepts are introduced that significantly improve these platforms through the use of optimized materials, open (i.e., "holey") layouts and precurved designs. These schemes 1) reduce the stresses at the skin interface, 2) facilitate release of interfacial moisture from transepidermal water loss, 3) allow visual inspection of the skin for rashes or other forms of irritation, 4) enable triggered reduction of adhesion to reduce the probability for injuries that can result from device removal. A combination of systematic benchtop testing and computational modeling identifies the essential mechanisms and key considerations. Demonstrations on adult volunteers and on a neonate in an operating NICUs illustrate a broad range of capabilities in continuous, clinical-grade monitoring of conventional vital signs, and unconventional indicators of health status., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
38. Molecular Ferroelectric-Based Flexible Sensors Exhibiting Supersensitivity and Multimodal Capability for Detection.
- Author
-
Li W, Li C, Zhang G, Li L, Huang K, Gong X, Zhang C, Zheng A, Tang Y, Wang Z, Tong Q, Dong W, Jiang S, Zhang S, and Wang Q
- Abstract
Although excellent dielectric, piezoelectric, and pyroelectric properties matched with or even surpassing those of ferroelectric ceramics have been recently discovered in molecular ferroelectrics, their successful applications in devices are scarce. The fracture proneness of molecular ferroelectrics under mechanical loading precludes their applications as flexible sensors in bulk crystalline form. Here, self-powered flexible mechanical sensors prepared from the facile deposition of molecular ferroelectric [C(NH
2 )3 ]ClO4 onto a porous polyurethane (PU) matrix are reported. [C(NH2 )3 ]ClO4 -PU is capable of detecting pressure of 3 Pa and strain of 1% that are hardly accessible by the state-of-the-art piezoelectric, triboelectric, and piezoresistive sensors, and presents the ability of sensing multimodal mechanical forces including compression, stretching, bending, shearing, and twisting with high cyclic stability. This scaling analysis corroborated with computational modeling provides detailed insights into the electro-mechanical coupling and establishes rules of engineering design and optimization for the hybrid sponges. Demonstrative applications of the [C(NH2 )3 ]ClO4 -PU array suggest potential uses in interactive electronics and robotic systems., (© 2021 Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
39. Bitter Flavored, Soft Composites for Wearables Designed to Reduce Risks of Choking in Infants.
- Author
-
Cho D, Li R, Jeong H, Li S, Wu C, Tzavelis A, Yoo S, Kwak SS, Huang Y, and Rogers JA
- Subjects
- Aversive Agents chemistry, Aversive Agents metabolism, Dimethylpolysiloxanes chemistry, Humans, Hydrogels chemistry, Infant, Kinetics, Monitoring, Physiologic instrumentation, Quaternary Ammonium Compounds chemistry, Quaternary Ammonium Compounds metabolism, Monitoring, Physiologic methods, Wearable Electronic Devices
- Abstract
Wireless, skin-integrated devices for continuous, clinical-quality monitoring of vital signs have the potential to greatly improve the care of patients in neonatal and pediatric intensive-care units. These same technologies can also be used in the home, across a broad spectrum of ages, from beginning to end of life. Although miniaturized forms of such devices minimize patient burden and improve compliance, they represent life-threatening choking hazards for infants. A materials strategy is presented here to address this concern. Specifically, composite materials are introduced as soft encapsulating layers and gentle adhesives that release chemical compounds designed to elicit an intense bitter taste when placed in the mouth. Reflexive reactions to this sensation strongly reduce the potential for ingestion, as a safety feature. The materials systems described involve a non-toxic bitterant (denatonium benzoate) as a dopant in an elastomeric (poly(dimethylsiloxane)) or hydrogel matrix. Experimental and computational studies of these composite materials and the kinetics of release of the bitterant define the key properties. Incorporation into various wireless skin-integrated sensors demonstrates their utility in functional systems. This simple strategy offers valuable protective capabilities, with broad practical relevance to the welfare of children monitored with wearable devices., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
40. An Anti-Fatigue Design Strategy for 3D Ribbon-Shaped Flexible Electronics.
- Author
-
Cheng X, Zhang F, Bo R, Shen Z, Pang W, Jin T, Song H, Xue Z, and Zhang Y
- Subjects
- Humans, Metals chemistry, Polymers chemistry, Temperature, Thermometry instrumentation, Wearable Electronic Devices, Electronics, Equipment Design methods
- Abstract
Three-dimensional (3D) flexible electronics represent an emerging area of intensive attention in recent years, owing to their broad-ranging applications in wearable electronics, flexible robots, tissue/cell scaffolds, among others. The widely adopted 3D conductive mesostructures in the functional device systems would inevitably undergo repetitive out-of-plane compressions during practical operations, and thus, anti-fatigue design strategies are of great significance to improve the reliability of 3D flexible electronics. Previous studies mainly focused on the fatigue failure behavior of planar ribbon-shaped geometries, while anti-fatigue design strategies and predictive failure criteria addressing 3D ribbon-shaped mesostructures are still lacking. This work demonstrates an anti-fatigue strategy to significantly prolong the fatigue life of 3D ribbon-shaped flexible electronics by switching the metal-dominated failure to desired polymer-dominated failure. Combined in situ measurements and computational studies allow the establishment of a failure criterion capable of accurately predicting fatigue lives under out-of-plane compressions, thereby providing useful guidelines for the design of anti-fatigue mesostructures with diverse 3D geometries. Two mechanically reliable 3D devices, including a resistance-type vibration sensor and a janus sensor capable of decoupled temperature measurements, serve as two demonstrative examples to highlight potential applications in long-term health monitoring and human-like robotic perception, respectively., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
41. Mechanics Design in Cellulose-Enabled High-Performance Functional Materials.
- Author
-
Ray U, Zhu S, Pang Z, and Li T
- Abstract
The abundance of cellulose found in natural resources such as wood, and the wide spectrum of structural diversity of cellulose nanomaterials in the form of micro-nano-sized particles and fibers, have sparked a tremendous interest to utilize cellulose's intriguing mechanical properties in designing high-performance functional materials, where cellulose's structure-mechanics relationships are pivotal. In this progress report, multiscale mechanics understanding of cellulose, including the key role of hydrogen bonding, the dependence of structural interfaces on the spatial hydrogen bond density, the effect of nanofiber size and orientation on the fracture toughness, are discussed along with recent development on enabling experimental design techniques such as structural alteration, manipulation of anisotropy, interface and topology engineering. Progress in these fronts renders cellulose a prospect of being effectuated in an array of emerging sustainable applications and being fabricated into high-performance structural materials that are both strong and tough., (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2021
- Full Text
- View/download PDF
42. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing.
- Author
-
Zhang B, Li H, Cheng J, Ye H, Sakhaei AH, Yuan C, Rao P, Zhang YF, Chen Z, Wang R, He X, Liu J, Xiao R, Qu S, and Ge Q
- Abstract
4D printing is an emerging fabrication technology that enables 3D printed structures to change configuration over "time" in response to an environmental stimulus. Compared with other soft active materials used for 4D printing, shape-memory polymers (SMPs) have higher stiffness, and are compatible with various 3D printing technologies. Among them, ultraviolet (UV)-curable SMPs are compatible with Digital Light Processing (DLP)-based 3D printing to fabricate SMP-based structures with complex geometry and high-resolution. However, UV-curable SMPs have limitations in terms of mechanical performance, which significantly constrains their application ranges. Here, a mechanically robust and UV-curable SMP system is reported, which is highly deformable, fatigue resistant, and compatible with DLP-based 3D printing, to fabricate high-resolution (up to 2 µm), highly complex 3D structures that exhibit large shape change (up to 1240%) upon heating. More importantly, the developed SMP system exhibits excellent fatigue resistance and can be repeatedly loaded more than 10 000 times. The development of the mechanically robust and UV-curable SMPs significantly improves the mechanical performance of the SMP-based 4D printing structures, which allows them to be applied to engineering applications such as aerospace, smart furniture, and soft robots., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
43. Chemical Synthesis and Integration of Highly Conductive PdTe 2 with Low-Dimensional Semiconductors for p-Type Transistors with Low Contact Barriers.
- Author
-
Zheng J, Miao T, Xu R, Ping X, Wu Y, Lu Z, Zhang Z, Hu D, Liu L, Zhang Q, Li D, Cheng Z, Ma W, Xie L, and Jiao L
- Abstract
Low-dimensional semiconductors provide promising ultrathin channels for constructing more-than-Moore devices. However, the prominent contact barriers at the semiconductor-metal electrodes interfaces greatly limit the performance of the obtained devices. Here, a chemical approach is developed for the construction of p-type field-effect transistors (FETs) with low contact barriers by achieving the simultaneous synthesis and integration of 2D PdTe
2 with various low-dimensional semiconductors. The 2D PdTe2 synthesized through a quasi-liquid process exhibits high electrical conductivity (≈4.3 × 106 S m-1 ) and thermal conductivity (≈130 W m-1 K-1 ), superior to other transition metal dichalcogenides (TMDCs) and even higher than some metals. In addition, PdTe2 electrodes with desired geometry can be synthesized directly on 2D MoTe2 and other semiconductors to form high-performance p-type FETs without any further treatment. The chemically derived atomically ordered PdTe2 -MoTe2 interface results in significantly reduced contact barrier (65 vs 240 meV) and thus increases the performance of the obtained devices. This work demonstrates the great potential of 2D PdTe2 as contact materials and also opens up a new avenue for the future device fabrication through the chemical construction and integration of 2D components., (© 2021 Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
44. A Mechanically Robust and Versatile Liquid-Free Ionic Conductive Elastomer.
- Author
-
Yiming B, Han Y, Han Z, Zhang X, Li Y, Lian W, Zhang M, Yin J, Sun T, Wu Z, Li T, Fu J, Jia Z, and Qu S
- Abstract
Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability., (© 2021 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
45. Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion.
- Author
-
Guo X, Ni X, Li J, Zhang H, Zhang F, Yu H, Wu J, Bai Y, Lei H, Huang Y, Rogers JA, and Zhang Y
- Abstract
Advanced mechanical metamaterials with unusual thermal expansion properties represent an area of growing interest, due to their promising potential for use in a broad range of areas. In spite of previous work on metamaterials with large or ultralow coefficient of thermal expansion (CTE), achieving a broad range of CTE values with access to large thermally induced dimensional changes in structures with high filling ratios remains a key challenge. Here, design concepts and fabrication strategies for a kirigami-inspired class of 2D hierarchical metamaterials that can effectively convert the thermal mismatch between two closely packed constituent materials into giant levels of biaxial/uniaxial thermal expansion/shrinkage are presented. At large filling ratios (>50%), these systems offer not only unprecedented negative and positive biaxial CTE (i.e., -5950 and 10 710 ppm K
-1 ), but also large biaxial thermal expansion properties (e.g., > 21% for 20 K temperature increase). Theoretical modeling of thermal deformations provides a clear understanding of the microstructure-property relationships and serves as a basis for design choices for desired CTE values. An Ashby plot of the CTE versus density serves as a quantitative comparison of the hierarchical metamaterials presented here to previously reported systems, indicating the capability for substantially enlarging the accessible range of CTE., (© 2020 Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
46. Polymeric Membranes with Selective Solution-Diffusion for Intercepting Volatile Organic Compounds during Solar-Driven Water Remediation.
- Author
-
Qi D, Liu Y, Liu Y, Liu Z, Luo Y, Xu H, Zhou X, Zhang J, Yang H, Wang W, and Chen X
- Abstract
Solar evaporation through a photothermal porous material provides a feasible and sustainable method for water remediation. Several photothermal materials have been developed to enhance solar evaporation efficiency. However, a critical limitation of current photothermal materials is their inability to separate water from the volatile organic compounds (VOCs) present in wastewater. Here, a microstructured ultrathin polymeric membrane that enables freshwater separation from VOC pollutants by solar evaporation with a VOC removal rate of 90%, is reported. The different solution-diffusion behaviors of water and VOCs with polymeric membranes facilitate their separation. Moreover, owing to increased light absorption, enlarged liquid-air interface, and shortened mass transfer distance, the microstructured and ultrathin configuration of the membrane helps to balance the tradeoff between permeation selectivity and water production capacity. The membrane is not only effective for evaporation of simulated volatile pollutants in a prototype, but can also intercept complex volatile organic contaminants in natural water sources and produce water that meets drinking-water standards. With practical demonstration and satisfactory purification performance, this work paves the way for practical application of solar evaporation for effective water remediation., (© 2020 Wiley-VCH GmbH.)
- Published
- 2020
- Full Text
- View/download PDF
47. A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance.
- Author
-
Pan L, Cai P, Mei L, Cheng Y, Zeng Y, Wang M, Wang T, Jiang Y, Ji B, Li D, and Chen X
- Subjects
- Acrylic Resins chemistry, Adhesiveness, Alginates chemistry, Electric Impedance, Electrodes, Hydrogels chemistry
- Abstract
Simultaneous implementation of high signal-to-noise ratio (SNR) but low crosstalk is of great importance for weak surface electromyography (sEMG) signals when precisely driving a prosthesis to perform sophisticated activities. However, due to gaps with the curved skin during muscle contraction, many electrodes have poor compliance with skin and suffer from high bioelectrical impedance. This causes serious noise and error in the signals, especially the signals from low-level muscle contractions. Here, the design of a compliant electrode based on an adhesive hydrogel, alginate-polyacrylamide (Alg-PAAm) is reported, which eliminates those large gaps through the strong electrostatic interaction and abundant hydrogen bond with the skin. The obtained compliant electrode, having an ultralow bioelectrical impedance of ≈20 kΩ, can monitor even 2.1% maximal voluntary contraction (MVC) of muscle. Furthermore, benefiting from the high SNR of >5:1 at low-level MVC, the crosstalk from irrelevant muscle is minimized through reducing the electrode size. Finally, a prosthesis is successfully demonstrated to precisely grasp a needle based on a 9 mm
2 Alg-PAAm compliant electrode. The strategy to design such compliant electrodes provides the potential for improving the quality of dynamically weak sEMG signals to precisely control prosthesis in performing purposefully dexterous activity., (© 2020 Wiley-VCH GmbH.)- Published
- 2020
- Full Text
- View/download PDF
48. Assembly of Foldable 3D Microstructures Using Graphene Hinges.
- Author
-
Lim S, Luan H, Zhao S, Lee Y, Zhang Y, Huang Y, Rogers JA, and Ahn JH
- Abstract
Origami/kirigami-inspired 3D assembly approaches have recently attracted attention for a variety of applications, such as advanced optoelectronic devices and biomedical sensors. The results reported here describe an approach to construct classes of multiple foldable 3D microstructures that involve deformations that typical conductive materials, such as conventional metal films, cannot tolerate. Atomically thin graphene sheets serve as folding hinges during a process of 2D to 3D conversion via a deterministic buckling process. The exceptional mechanical properties of graphene enable the controlled, geometric transformation of a 2D precursor bonded at selective sites on a prestretched elastomer into folded 3D microstructures, in a reversible manner without adverse effects on the electrical properties. Experimental and computational investigations of the folding mechanisms for such types of 3D objects reveal the underlying physics and the dependence of the process on the thickness of the graphene/supporting films that define the hinges., (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2020
- Full Text
- View/download PDF
49. 3D Printed Mechanically Robust Graphene/CNT Electrodes for Highly Efficient Overall Water Splitting.
- Author
-
Peng M, Shi D, Sun Y, Cheng J, Zhao B, Xie Y, Zhang J, Guo W, Jia Z, Liang Z, and Jiang L
- Abstract
3D printing of graphene electrodes with high mechanical strength has been a growing interest in the development of advanced energy, environment, and electronic systems, yet is extremely challenging. Herein, a 3D printed bioinspired electrode of graphene reinforced with 1D carbon nanotubes (CNTs) (3DP GC) with both high flexural strength and hierarchical porous structure is reported via a 3D printing strategy. Mechanics modeling reveals the critical role of the 1D CNTs in the enhanced flexural strength by increasing the friction and adhesion between the 2D graphene nanosheets. The 3DP GC electrodes hold distinct advantages: i) an intrinsically high flexural strength that enables their large-scale applications; and ii) a hierarchical porous structure that offers large surface area and interconnected channels, endowing fast mass and/or charge and ions transport rate, which is thus beneficial for acting as an ideal catalyst carrier. The 3DP GC electrode integrated with a NiFeP nanosheets array exhibits a voltage of 1.58 V at 30 mA cm
-2 as bifunctional electrode for water splitting, which is much better than most of the reported Ni-, Co-, and Fe-based bifunctional electrocatalysts. Importantly, this study paves the way for the practical applications of 3D printed graphene electrodes in many energy conversion/storage, environmental, and electronic systems where high flexural strength is preferred., (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)- Published
- 2020
- Full Text
- View/download PDF
50. Hybrid Magnetic Micropillar Arrays for Programmable Actuation.
- Author
-
Wang Z, Wang K, Liang D, Yan L, Ni K, Huang H, Li B, Guo Z, Wang J, Ma X, Tang X, and Chen LQ
- Abstract
Stimuli-responsive micro/nanostructures that can dynamically and reversibly adapt their configurations according to external stimuli have stimulated a wide scope of engineering applications, ranging from material surface engineering to micromanipulations. However, it remains a challenge to achieve a precise local control of the actuation to realize applications that require heterogeneous and on-demand responses. Here, a new experimental technique is developed for large arrays of hybrid magnetic micropillars and achieve precise local control of actuation using a simple magnetic field. By manipulating the spatial distribution of magnetic nanoparticles within individual elastomer micropillars, a wide range of the magnetomechanical responses from less than 5% to ≈50% for the ratio of the bending deflection to the original length of the pillars is realized. It is demonstrated that the micropillars with different degrees of bending deformation can be configured in any spatial pattern using a photomask-assisted template-casting technique to achieve heterogeneous, site-specific, and programmed bending actuations. This unprecedented local control of the micropillars offers exciting novel applications, as demonstrated here in encryptable surface printing and stamping, direction- and track-programmable microparticle/droplet transport, and smart magnetic micro-tweezers. The hybrid magnetic micropillars reported here provide a versatile prototype for heterogeneous and on-demand actuation using programmable stimuli-responsive micro/nanostructures., (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.