1. Origin of Intramolecular Low‐Threshold Amplified Spontaneous Emission
- Author
-
Qi Zhang, Yan Qian, Ruidong Xia, Yuanping Yi, Linghai Xie, Jérémie Léonard, Wei Huang, Qi Wei, Stefan Haacke, Juan Cabanillas-Gonzalez, Ruihong Duan, Nanjing University of Posts and Telecommunications [Nanjing] (NJUPT), Zhengzhou University, Beijing National Laboratory for Molecular Sciences (BNLMS), Beihang University (BUAA), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Instituto Madrileño de Estudios Avanzados (IMDEA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), and Léonard, Jérémie
- Subjects
Amplified spontaneous emission ,Materials science ,02 engineering and technology ,organic lasers ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,amplified spontaneous emission ,Organic semiconductor ,Intramolecular force ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,organic semiconductors ,0210 nano-technology - Abstract
International audience; Amorphous thin films from solution-processable semiconductors are key materials for low-cost and large area optoelectronics. Design rules toward novel amorphous compounds with outstanding light emission and light amplification properties require understanding of the intimate relation between chemical and electronic structure. Here, a series of compounds with tunable electronic transition characters of the lowest excited state, from local excited (LE), hybrid local charge-transfer (HLCT) to charge-transfer (CT) character is delicately designed. By deploying a combination of computational calculations and femtosecond-transient absorption experiments, it is shown that pure LE states strongly coupled to high wavenumber vibrational modes favor to form a few dominant discrete vibrational levels and are essential for optical gain, whereas HLCT or CT states are preferably coupled to low frequency vibrational modes and form a large number of consecutive vibrational levels which lead to broad excited-state absorption overwhelming stimulated emission. The results provide guidelines for the rational design of efficient organic laser materials.
- Published
- 2021
- Full Text
- View/download PDF