1. Real Clifford Algebras as Tensor Products over Centers
- Author
-
Yuanfeng Song, Xiankun Du, and Wuming Li
- Subjects
Discrete mathematics ,Mathematics::Functional Analysis ,Tensor product ,Applied Mathematics ,Clifford algebra ,Center (category theory) ,Real vector ,Mathematics - Abstract
Denote by \({\mathcal{C}\ell_{p,q}}\) the Clifford algebra on the real vector space \({\mathbb{R}^{p,q}}\). This paper gives a unified tensor product expression of \({\mathcal{C}\ell_{p,q}}\) by using the center of \({\mathcal{C}\ell_{p,q}}\). The main result states that for nonnegative integers p, q, \({\mathcal{C}\ell_{p,q} \simeq \otimes^{\kappa-\delta}\mathcal{C}_{1,1} \otimes Cen(\mathcal{C}\ell_{p,q}) \otimes^{\delta} \mathcal{C}\ell_{0,2},}\) where \({p + q \equiv \varepsilon}\) mod 2, \({\kappa = ((p + q) - \varepsilon)/2, p - |q - \varepsilon| \equiv i}\) mod 8 and \({\delta = \lfloor i / 4 \rfloor}\).
- Published
- 2013
- Full Text
- View/download PDF