9 results on '"Beekman, M."'
Search Results
2. Longevity Relatives Count score identifies heritable longevity carriers and suggests case improvement in genetic studies.
- Author
-
van den Berg N, Rodríguez-Girondo M, Mandemakers K, Janssens AAPO, Beekman M, and Slagboom PE
- Subjects
- Female, Humans, Male, Aging genetics, Genetic Predisposition to Disease epidemiology, Genetic Testing methods, Longevity genetics
- Abstract
Loci associated with longevity are likely to harbor genes coding for key players of molecular pathways involved in a lifelong decreased mortality and decreased/compressed morbidity. However, identifying such loci is challenging. One of the most plausible reasons is the uncertainty in defining long-lived cases with the heritable longevity trait among long-living phenocopies. To avoid phenocopies, family selection scores have been constructed, but these have not yet been adopted as state of the art in longevity research. Here, we aim to identify individuals with the heritable longevity trait by using current insights and a novel family score based on these insights. We use a unique dataset connecting living study participants to their deceased ancestors covering 37,825 persons from 1,326 five-generational families, living between 1788 and 2019. Our main finding suggests that longevity is transmitted for at least two subsequent generations only when at least 20% of all relatives are long-lived. This proves the importance of family data to avoid phenocopies in genetic studies., (© 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
3. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits.
- Author
-
Teumer A, Qi Q, Nethander M, Aschard H, Bandinelli S, Beekman M, Berndt SI, Bidlingmaier M, Broer L, Cappola A, Ceda GP, Chanock S, Chen MH, Chen TC, Chen YD, Chung J, Del Greco Miglianico F, Eriksson J, Ferrucci L, Friedrich N, Gnewuch C, Goodarzi MO, Grarup N, Guo T, Hammer E, Hayes RB, Hicks AA, Hofman A, Houwing-Duistermaat JJ, Hu F, Hunter DJ, Husemoen LL, Isaacs A, Jacobs KB, Janssen JA, Jansson JO, Jehmlich N, Johnson S, Juul A, Karlsson M, Kilpelainen TO, Kovacs P, Kraft P, Li C, Linneberg A, Liu Y, Loos RJ, Lorentzon M, Lu Y, Maggio M, Magi R, Meigs J, Mellström D, Nauck M, Newman AB, Pollak MN, Pramstaller PP, Prokopenko I, Psaty BM, Reincke M, Rimm EB, Rotter JI, Saint Pierre A, Schurmann C, Seshadri S, Sjögren K, Slagboom PE, Strickler HD, Stumvoll M, Suh Y, Sun Q, Zhang C, Svensson J, Tanaka T, Tare A, Tönjes A, Uh HW, van Duijn CM, van Heemst D, Vandenput L, Vasan RS, Völker U, Willems SM, Ohlsson C, Wallaschofski H, and Kaplan RC
- Subjects
- Adult, Aging blood, Female, Gene Expression Regulation, Humans, Insulin-Like Growth Factor Binding Protein 3 blood, Male, Metabolome genetics, Quantitative Trait Loci genetics, Regulatory Sequences, Nucleic Acid genetics, Aging genetics, Genome-Wide Association Study, Insulin-Like Growth Factor Binding Protein 3 genetics, Insulin-Like Growth Factor I genetics, Quantitative Trait, Heritable
- Abstract
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype-phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci., (© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
4. Copy number variation associates with mortality in long-lived individuals: a genome-wide assessment.
- Author
-
Nygaard M, Debrabant B, Tan Q, Deelen J, Andersen-Ranberg K, de Craen AJ, Beekman M, Jeune B, Slagboom PE, Christensen K, and Christiansen L
- Subjects
- Adult, Aged, Aged, 80 and over, Female, Humans, Male, Middle Aged, Phenotype, Prospective Studies, DNA Copy Number Variations genetics, Genetic Variation genetics, Genome, Human genetics, Genome-Wide Association Study, Longevity genetics
- Abstract
Copy number variants (CNVs) represent a significant source of genetic variation in the human genome and have been implicated in numerous diseases and complex traits. To date, only a few studies have investigated the role of CNVs in human lifespan. To investigate the impact of CNVs on prospective mortality at the extreme end of life, where the genetic component of lifespan appears most profound, we analyzed genomewide CNV data in 603 Danish nonagenarians and centenarians (mean age 96.9 years, range 90.0-102.5 years). Replication was performed in 500 long-lived individuals from the Leiden Longevity Study (mean age 93.2 years, range 88.9-103.4 years). First, we assessed the association between the CNV burden of each individual (the number of CNVs, the average CNV length, and the total CNV length) and mortality and found a significant increase in mortality per 10 kb increase in the average CNV length, both for all CNVs (hazard ratio (HR) = 1.024, P = 0.002) and for duplications (HR = 1.011, P = 0.005), as well as per 100 kb increase in the total length of deletions (HR = 1.009, P = 0.0005). Next, we assessed the relation between specific deletions and duplications and mortality. Although no genome-wide significant associations were discovered, we identified six deletions and one duplication that showed consistent association with mortality in both or either of the sexes across both study populations. These results indicate that the genome-wide CNV burden, specifically the average CNV length and the total CNV length, associates with higher mortality in long-lived individuals., (© 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
5. Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein-protein interaction modules as robust markers of human aging.
- Author
-
van den Akker EB, Passtoors WM, Jansen R, van Zwet EW, Goeman JJ, Hulsman M, Emilsson V, Perola M, Willemsen G, Penninx BW, Heijmans BT, Maier AB, Boomsma DI, Kok JN, Slagboom PE, Reinders MJ, and Beekman M
- Subjects
- Aged, 80 and over, Cell Cycle Proteins genetics, Cell Cycle Proteins metabolism, Databases, Genetic, Gene Expression Regulation, Humans, Lymphocyte Activation genetics, Lymphocyte Count, Molecular Chaperones, Reproducibility of Results, Survival Analysis, T-Lymphocytes immunology, Aging blood, Aging genetics, Biomarkers blood, Protein Interaction Maps genetics, Transcriptome genetics
- Abstract
The bodily decline that occurs with advancing age strongly impacts on the prospects for future health and life expectancy. Despite the profound role of age in disease etiology, knowledge about the molecular mechanisms driving the process of aging in humans is limited. Here, we used an integrative network-based approach for combining multiple large-scale expression studies in blood (2539 individuals) with protein-protein Interaction (PPI) data for the detection of consistently coexpressed PPI modules that may reflect key processes that change throughout the course of normative aging. Module detection followed by a meta-analysis on chronological age identified fifteen consistently coexpressed PPI modules associated with chronological age, including a highly significant module (P = 3.5 × 10(-38)) enriched for 'T-cell activation' marking age-associated shifts in lymphocyte blood cell counts (R(2) = 0.603; P = 1.9 × 10(-10)). Adjusting the analysis in the compendium for the 'T-cell activation' module showed five consistently coexpressed PPI modules that robustly associated with chronological age and included modules enriched for 'Translational elongation', 'Cytolysis' and 'DNA metabolic process'. In an independent study of 3535 individuals, four of five modules consistently associated with chronological age, underpinning the robustness of the approach. We found three of five modules to be significantly enriched with aging-related genes, as defined by the GenAge database, and association with prospective survival at high ages for one of the modules including ASF1A. The hereby-detected age-associated and consistently coexpressed PPI modules therefore may provide a molecular basis for future research into mechanisms underlying human aging., (© 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
6. Lipidomics of familial longevity.
- Author
-
Gonzalez-Covarrubias V, Beekman M, Uh HW, Dane A, Troost J, Paliukhovich I, van der Kloet FM, Houwing-Duistermaat J, Vreeken RJ, Hankemeier T, and Slagboom EP
- Subjects
- Adult, Aged, Aged, 80 and over, Antioxidants metabolism, Biomarkers blood, Chromatography, Liquid, Cohort Studies, Ethanolamines blood, Female, Humans, Male, Mass Spectrometry, Middle Aged, Oxidative Stress, Phosphorylcholine blood, Sex Factors, Sphingomyelins blood, Triglycerides blood, Aging blood, Lipid Metabolism, Lipids blood, Longevity
- Abstract
Middle-aged offspring of nonagenarians, as compared to their spouses (controls), show a favorable lipid metabolism marked by larger LDL particle size in men and lower total triglyceride levels in women. To investigate which specific lipids associate with familial longevity, we explore the plasma lipidome by measuring 128 lipid species using liquid chromatography coupled to mass spectrometry in 1526 offspring of nonagenarians (59 years ± 6.6) and 675 (59 years ± 7.4) controls from the Leiden Longevity Study. In men, no significant differences were observed between offspring and controls. In women, however, 19 lipid species associated with familial longevity. Female offspring showed higher levels of ether phosphocholine (PC) and sphingomyelin (SM) species (3.5-8.7%) and lower levels of phosphoethanolamine PE (38:6) and long-chain triglycerides (TG) (9.4-12.4%). The association with familial longevity of two ether PC and four SM species was independent of total triglyceride levels. In addition, the longevity-associated lipid profile was characterized by a higher ratio of monounsaturated (MUFA) over polyunsaturated (PUFA) lipid species, suggesting that female offspring have a plasma lipidome less prone to oxidative stress. Ether PC and SM species were identified as novel longevity markers in females, independent of total triglycerides levels. Several longevity-associated lipids correlated with a lower risk of hypertension and diabetes in the Leiden Longevity Study cohort. This sex-specific lipid signature marks familial longevity and may suggest a plasma lipidome with a better antioxidant capacity, lower lipid peroxidation and inflammatory precursors, and an efficient beta-oxidation function., (© 2013 John Wiley & Sons Ltd and the Anatomical Society.)
- Published
- 2013
- Full Text
- View/download PDF
7. Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study.
- Author
-
Beekman M, Blanché H, Perola M, Hervonen A, Bezrukov V, Sikora E, Flachsbart F, Christiansen L, De Craen AJ, Kirkwood TB, Rea IM, Poulain M, Robine JM, Valensin S, Stazi MA, Passarino G, Deiana L, Gonos ES, Paternoster L, Sørensen TI, Tan Q, Helmer Q, van den Akker EB, Deelen J, Martella F, Cordell HJ, Ayers KL, Vaupel JW, Törnwall O, Johnson TE, Schreiber S, Lathrop M, Skytthe A, Westendorp RG, Christensen K, Gampe J, Nebel A, Houwing-Duistermaat JJ, Slagboom PE, and Franceschi C
- Subjects
- Aged, Aged, 80 and over, Alleles, Chromosome Mapping, Chromosomes, Human, Pair 14, Chromosomes, Human, Pair 17, Chromosomes, Human, Pair 19, Cluster Analysis, Europe, Genetic Linkage, Genome, Human, Genome-Wide Association Study, Humans, Lod Score, Middle Aged, Mitochondrial Precursor Protein Import Complex Proteins, Siblings, Apolipoprotein C-I genetics, Apolipoproteins E genetics, Genetic Loci, Longevity genetics, Membrane Transport Proteins genetics
- Abstract
Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10(-8) ). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10(-5) , respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity., (© 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.)
- Published
- 2013
- Full Text
- View/download PDF
8. Gene expression analysis of mTOR pathway: association with human longevity.
- Author
-
Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, and Slagboom PE
- Subjects
- Aged, 80 and over, Gene Expression, Humans, Signal Transduction, Aging genetics, Longevity genetics, TOR Serine-Threonine Kinases genetics, TOR Serine-Threonine Kinases metabolism
- Abstract
mTOR signalling is implicated in the development of disease and in lifespan extension in model organisms. This pathway has been associated with human diseases such as diabetes and cancer, but has not been investigated for its impact on longevity per se. Here, we investigated whether transcriptional variation within the mTOR pathway is associated with human longevity using whole-blood samples from the Leiden Longevity Study. This is a unique cohort of Dutch families with extended survival across generations, decreased morbidity and beneficial metabolic profiles in middle-age. By comparing mRNA levels of nonagenarians and middle-aged controls, the mTOR signalling gene set was found to associate with old age (P = 4.6 × 10(-7)). Single gene analysis showed that seven of 40 mTOR pathway genes had a significant differential expression of at least 5%. Of these, the RPTOR (Raptor) gene was found to be differentially expressed also when the offspring of nonagenarians was compared with their spouses, indicating association with familial longevity in middle-age. This association was not explained by variation between the groups in the prevalence of type 2 diabetes and cancer or glucose levels. Thus, the mTOR pathway not only plays a role in the regulation of disease and aging in animal models, but also in human health and longevity., (© 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.)
- Published
- 2013
- Full Text
- View/download PDF
9. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited.
- Author
-
Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L, Kremer D, van der Breggen R, Suchiman HE, Lakenberg N, van den Akker EB, Passtoors WM, Tiemeier H, van Heemst D, de Craen AJ, Rivadeneira F, de Geus EJ, Perola M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K, van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RG, and Slagboom PE
- Subjects
- Adult, Aged, Aged, 80 and over, Alzheimer Disease genetics, Case-Control Studies, Cohort Studies, Female, Forkhead Box Protein O3, Forkhead Transcription Factors genetics, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Longitudinal Studies, Male, Middle Aged, Polymorphism, Single Nucleotide, Proto-Oncogene Proteins c-akt genetics, Apolipoproteins E genetics, Genome, Human, Longevity genetics
- Abstract
By studying the loci that contribute to human longevity, we aim to identify mechanisms that contribute to healthy aging. To identify such loci, we performed a genome-wide association study (GWAS) comparing 403 unrelated nonagenarians from long-living families included in the Leiden Longevity Study (LLS) and 1670 younger population controls. The strongest candidate SNPs from this GWAS have been analyzed in a meta-analysis of nonagenarian cases from the Rotterdam Study, Leiden 85-plus study, and Danish 1905 cohort. Only one of the 62 prioritized SNPs from the GWAS analysis (P<1×10(-4) ) showed genome-wide significance with survival into old age in the meta-analysis of 4149 nonagenarian cases and 7582 younger controls [OR=0.71 (95% CI 0.65-0.77), P=3.39 × 10(-17) ]. This SNP, rs2075650, is located in TOMM40 at chromosome 19q13.32 close to the apolipoprotein E (APOE) gene. Although there was only moderate linkage disequilibrium between rs2075650 and the ApoE ε4 defining SNP rs429358, we could not find an APOE-independent effect of rs2075650 on longevity, either in cross-sectional or in longitudinal analyses. As expected, rs429358 associated with metabolic phenotypes in the offspring of the nonagenarian cases from the LLS and their partners. In addition, we observed a novel association between this locus and serum levels of IGF-1 in women (P=0.005). In conclusion, the major locus determining familial longevity up to high age as detected by GWAS was marked by rs2075650, which tags the deleterious effects of the ApoE ε4 allele. No other major longevity locus was found., (© 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.)
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.