1. Rice Yield Estimation Based on Cumulative Time Series Vegetation Indices of UAV MS and RGB Images
- Author
-
Jun Li, Weiqiang Wang, Yali Sheng, Sumera Anwar, Xiangxiang Su, Ying Nian, Hu Yue, Qiang Ma, Jikai Liu, and Xinwei Li
- Subjects
remote sensing ,UAV ,yield ,rice ,growth stages ,vegetation indices ,Agriculture - Abstract
Timely and accurate yield estimation is essential for effective crop management and the grain trade. Remote sensing has emerged as a valuable tool for monitoring rice yields; however, many studies concentrate on a single period or simply aggregate multiple periods, neglecting the complexities underlying yield formation. The study enhances yield estimation by integrating cumulative time series vegetation indices (VIs) from multispectral (MS) and RGB (Red, Green, Blue) sensors to identify optimal combinations of growth periods. We utilized two unmanned aerial vehicle to capture spectral information from rice canopies through MS and RGB sensors. By analyzing the correlations between vegetation indices from different sensors and rice yields, the optimal MS-VIs and RGB-VIs for each period were identified. Following this, the relationship between the cumulative time series of MS-VIs, RGB-VIs, and rice yields was further examined. The results demonstrate that the booting stage is a crucial growth period influencing rice yield, with VIs exhibiting increased correlation with yield, peaking during this stage before declining. For the MS sensor, the rice yield model, based on the cumulative time series of MS-VIs from the tillering stage to the panicle initiation stage, achieves optimal accuracy (R2 = 0.722, RRMSE = 0.555). For the RGB sensor, the rice yield model, based on the cumulative time series of RGB-VIs from the tillering stage to the grain-filling stage, yields the highest accuracy (R2 = 0.727, RRMSE = 0.526). In comparison, the multi-sensor rice yield model, which combines the cumulative time series of MS-VIs from the tillering stage and RGB-VIs from the panicle initiation to grain-filling stages, achieves the highest accuracy with R2 = 0.759 and RRMSE = 0.513. These findings suggest that cumulative time series VIs and the integration of multiple sensors enhance yield prediction accuracy, providing a comprehensive approach for estimating rice yield dynamics and supporting precision agriculture and informed crop management.
- Published
- 2024
- Full Text
- View/download PDF