1. Application of fuzzy Malliavin calculus in hedging fixed strike lookback option
- Author
-
Kefan Liu, Jingyao Chen, Jichao Zhang, and Yueting Yang
- Subjects
fuzzy stochastic differential equation ,malliavin calculus ,clark-ocone formula ,lookback options ,fuzzy options hedging ,Mathematics ,QA1-939 - Abstract
In this paper, we develop a Malliavin calculus approach for hedging a fixed strike lookback option in fuzzy space. Due to the uncertainty in financial markets, it is not accurate to describe the problems of option pricing and hedging in terms of randomness alone. We consider a fuzzy pricing model by introducing a fuzzy stochastic differential equation with Skorohod sense. In this way, our model simultaneously involves randomness and fuzziness. A well-known hedging strategy for vanilla options is so-called Δ-hedging, which is usually derived from the Itô formula and some properties of partial differentiable equations. However, when dealing with some complex path-dependent options (such as lookback options), the major challenge is that the payoff function of these options may not be smooth, resulting in the estimates are computationally expensive. With the help of the Malliavin derivative and the Clark-Ocone formula, the difficulty will be readily solved, and it is also possible to apply this hedging strategy to fuzzy space. To obtain the explicit expression of the fuzzy hedging portfolio for lookback options, we adopt the Esscher transform and reflection principle techniques, which are beneficial to the calculation of the conditional expectation of fuzzy random variables and the payoff function with extremum, respectively. Some numerical examples are performed to analyze the sensitivity of the fuzzy hedging portfolio concerning model parameters and give the permissible range of the expected hedging portfolio of lookback options with uncertainty by a financial investor's subjective judgment.
- Published
- 2023
- Full Text
- View/download PDF