1. All-trans Retinoic Acid Augments Autophagy during Intracellular Bacterial Infection.
- Author
-
Coleman MM, Basdeo SA, Coleman AM, Cheallaigh CN, Peral de Castro C, McLaughlin AM, Dunne PJ, Harris J, and Keane J
- Subjects
- Cells, Cultured, Humans, Macrophages, Alveolar drug effects, Macrophages, Alveolar microbiology, Tuberculosis drug therapy, Tuberculosis microbiology, Antineoplastic Agents pharmacology, Antitubercular Agents pharmacology, Autophagy, Macrophages, Alveolar pathology, Mycobacterium tuberculosis drug effects, Tretinoin pharmacology, Tuberculosis pathology
- Abstract
Vitamin A deficiency strongly predicts the risk of developing tuberculosis (TB) in individuals exposed to Mycobacterium tuberculosis (Mtb). The burden of antibiotic-resistant TB is increasing globally; therefore, there is an urgent need to develop host-directed adjunctive therapies to treat TB. Alveolar macrophages, the niche cell for Mtb, metabolize vitamin A to all-trans retinoic acid (atRA), which influences host immune responses. We sought to determine the mechanistic effects of atRA on the host immune response to intracellular bacterial infection in primary human and murine macrophages. In this study, atRA promoted autophagy resulting in a reduced bacterial burden in human macrophages infected with Mtb and Bordetella pertussis, but not bacillus Calmette-Guérin (BCG). Autophagy is induced by cytosolic sensing of double-stranded DNA via the STING/TBK1/IRF3 axis; however, BCG is known to evade cytosolic DNA sensors. atRA enhanced colocalization of Mtb, but not BCG, with autophagic vesicles and acidified lysosomes. This enhancement was inhibited by blocking TBK1. Our data indicate that atRA augments the autophagy of intracellular bacteria that trigger cytosolic DNA-sensing pathways but does not affect bacteria that evade these sensors. The finding that BCG evades the beneficial effects of atRA has implications for vaccine design and global health nutritional supplementation strategies. The ability of atRA to promote autophagy and aid bacterial clearance of Mtb and B. pertussis highlights a potential role for atRA as a host-directed adjunctive therapy.
- Published
- 2018
- Full Text
- View/download PDF