1. Expression of programmed death-1 ligand (PD-L1) in tumor-infiltrating lymphocytes is associated with favorable spinal chordoma prognosis.
- Author
-
Zou MX, Peng AB, Lv GH, Wang XB, Li J, She XL, and Jiang Y
- Abstract
Aberrant expression of programmed death-1 (PD-1) receptor/PD-1 ligand (PD-L1) proteins alters human immunoresponse and promotes tumor development and progression. We assessed the expression status of PD-1 and PD-L1 in spinal chordoma tissue specimens and their association with clinicopathological characteristics of patients. Formalin-fixed paraffin-embedded tumor samples from 54 patients with spinal chordoma were collected for immunohistochemical analysis of PD-1 and PD-L1 expression. The association of the expression levels of PD-1 and PD-L1 with clinicopathological variables and survival data were statistically analyzed. Lymphocyte infiltrates were present in all 54 patient samples. Of 54 samples, 37 (68.5%) had both positive PD-1 and PD-L1 expression in tumor cell membrane. Moreover, 38 (70.4%) and 12 (22.2%) had positive PD-1 and PD-L1 expression in tumor-infiltrating lymphocytes (TILs), respectively. Tumors with positive PD-L1 expression were significantly associated with advanced stages of chordoma (p = 0.041) and TIL infiltration (p = 0.005), and had a borderline association with tumor grade (p = 0.051). However, positive tumor PD-L1 expression was not significantly associated with local recurrence-free survival (LRFS) or overall survival (OS). PD-1 expression in TILs was associated with poor LRFS (χ(2) = 10.051, p = 0.002, log-rank test). Multivariate analysis showed that PD-L1 expression only in TILs was an independent predictor for LRFS (HR = 0.298, 95% CI: 0.098-0.907, p = 0.033), and OS (HR = 0.188, 95% CI: 0.051-0.687, p = 0.011) in spinal chordoma patients. In conclusion, PD-L1 expression in TILs was an independent predictor for both LRFS and OS in spinal chordoma patients. Our findings suggest that the PD-1/PD-L1 pathway may be a novel therapeutic target for the immunotherapy of chordoma.
- Published
- 2016