1. Brain stem auditory-evoked potentials of dogs: wave forms and effects of recording electrode positions.
- Author
-
Holliday TA and Te Selle ME
- Subjects
- Acoustic Stimulation, Animals, Electrodes veterinary, Brain Stem physiology, Dogs physiology, Evoked Potentials, Auditory
- Abstract
Wave forms of canine brain stem auditory-evoked potentials (BAEP) and the effects of electrode positions on the wave forms were studied as a basis for experimental and clinical use of BAEP recording. The BAEP regularly consisted of 5 waves (I to V) with latencies and polarities similar to those of other species. In some dogs, waves II, III, and IV contained distinct subpeaks (a, b, c). Waves similar to waves VI and VII of other species were recorded in some dogs. With respect to BAEP, no site on the head was electrically inactive and BAEP could be recorded as far caudally as the caudal cervical region in some dogs. Wave I, positive in recordings from the dorsal midline of the calvaria (vertex) underwent polarity reversal and increased amplitude and duration in recordings made from caudal ventrolateral regions of the head (mastoid region). As a result, wave I partially or totally obscured wave II so that the latter could no longer be clearly identified. Waves IIIa and IIIb were differentially affected by moving the recording site, indicating that their generators were spatially separated. Waves IV and V were also affected by electrode site, consistent with previous reports that they have spatially separated generators in other species. In recordings made with vertex electrodes referenced to the mastoid region ipsilateral to the stimulated ear, wave I appeared as a high-amplitude positive peak with onset latency equalling that in noncephalic reference recordings, but with somewhat later peak latency and longer duration. As a result, wave II was partially or totally obscured so that only 4 major peaks were evident in the BAEP. In contralateral mastoid reference recordings, latency to peak of wave I was unchanged; however, amplitude of all waves was reduced and waves IIa and IIb were not as clearly differentiated as they were in noncephalic reference recordings.
- Published
- 1985