This mini review deals with the modern aspects of the spectroscopy and structural elucidation of amino acid derivatives and small biologically active compounds. Free peptide bond rotation in these systems yields various conformers, which possess differing biological activities. Another phenomenon is the intermolecular or intramolecular stacking observed in aromatic small peptides. Specifically, the main aim is to illustrate the successful application of the "complex tool", consisting of a combination of the theoretical approximation methods with experimental linear polarized infrared (IR-LD) and/or Raman spectroscopy of oriented colloid suspensions in a nematic host. The possibilities and limitations of the approach for detailed vibrational assignment and structural elucidation of small peptides are discussed. Having in mind that physical and chemical properties of these systems can be precisely calculated by means of ab initio and DFT methods at Hartee-Fock, MP2 and B3LYP level of theory, varying basis sets, the results obtained allow a precise assignment of many vibrational bands to the corresponding normal modes, electronic structures and conformational state. The validity of the conclusions about the structure or vibrational properties of these systems have been supported, compared and/or additionally proved by the results from independent physical methods. In this respect (1)H and (13)C-NMR, single crystal X-ray diffraction, HPLC tandem mass spectrometry as well as thermal methods are all employed. A well ordered crystal must first be grown in order to determine the molecular structure by the absolute method of single crystal X-ray diffraction. Although the 3D structures of peptides have been determined over the past decades, peptide crystallization is still a major obstacle to X-ray diffraction work, the presence of chiral centre/s makes for this difficulty. For this reason the "complex tool" presented can be regarded as an alternative method for obtaining of structural information in the solid-state. It is obviously that only absolute crystallographic method can yield geometric parameters, bond lengths and angles, but the spectroscopic method presented can provide information about the dihedral angles for cis- and trans-configurated amide groups, mutual disposition of the aromatic fragments in peptides. Its validity is illustrated by comparing the theoretical and spectroscopic results obtained with available crystallographic data. The mini review can serve as a useful source of information not only for specialists in IR spectroscopy but, also, for other scientists, working in the field of structural analysis of amino acid derivatives and other small biologically active systems.