1. Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection
- Author
-
María C. Moreno-Bondi, Javier L. Urraca, Jesús Gracia-Mora, Guillermo Aragoneses Cazorla, José F. Huertas-Pérez, and Ana M. García-Campaña
- Subjects
chemistry.chemical_classification ,Analyte ,Chromatography ,Polymers ,010405 organic chemistry ,Elution ,010401 analytical chemistry ,Molecularly imprinted polymer ,Oryza ,Polymer ,01 natural sciences ,Biochemistry ,High-performance liquid chromatography ,Citrinin ,0104 chemical sciences ,Analytical Chemistry ,Molecular Imprinting ,Magnetics ,chemistry.chemical_compound ,chemistry ,Methacrylamide ,Spectrophotometry, Ultraviolet ,Molecular imprinting ,Chromatography, Liquid - Abstract
In this work, we report the synthesis of novel magnetic molecularly imprinted polymers (m-MIPs) and their application to the selective extraction of the mycotoxin citrinin (CIT) from food samples. The polymers were prepared by surface imprinting of Fe3O4 nanoparticles, using 2-naphtholic acid (2-NA) as template molecule, N-3,5-bis(trifluoromethyl)phenyl-N'-4-vinylphenyl urea and methacrylamide as functional monomers and ethyleneglycol dimethacrylate as cross-linker. The resulting material was characterized by transmission electron microscopy (TEM), and X-ray diffraction (XRD) and Fourier transform infrared spectroscopies (FT-IR). The polymers were used to develop a solid-phase extraction method (m-MISPE) for the selective recovery of CIT from rice extracts prior to its determination by HPLC with UV diode array detection. The method involves ultrasound-assisted extraction of the mycotoxin from rice samples with (7:3, v/v) methanol/water, followed by sample cleanup and preconcentration with m-MIP. The extraction (washing and elution) conditions were optimized and their optimal values found to provide CIT recoveries of 94-98 % with relative standard deviations (RSD) less than 3.4 % (n = 3) for preconcentrated sample extracts (5 mL) fortified with the analyte at concentrations over the range 25-100 μg kg(-1). Based on the results, the application of the m-MIPs facilitates the accurate and efficient determination of CIT in rice extracts.
- Published
- 2016
- Full Text
- View/download PDF