1. Isotope Dilution Mass Spectrometry for Highly Precise Determination of Dissolved Inorganic Carbon in Seawater Aiming at Climate Change Studies
- Author
-
Jorge Ruiz Encinar, Mariella Moldovan, Laura Freije-Carrelo, Laura Alonso Sobrado, and J. Ignacio García Alonso
- Subjects
Reproducibility ,010504 meteorology & atmospheric sciences ,Isotope ,010405 organic chemistry ,Chemistry ,Analytical chemistry ,Isotope dilution ,Mass spectrometry ,01 natural sciences ,0104 chemical sciences ,Analytical Chemistry ,TRACER ,Dissolved organic carbon ,Sample preparation ,Seawater ,0105 earth and related environmental sciences - Abstract
Dissolved inorganic carbon (DIC) is one of the most important parameters to be measured in seawaters for climate change studies. Its quantitative assessment requires analytical methodologies with overall uncertainties around 0.05% RSD for clear evaluation of temporal trends. Herein, two alternative isotope dilution mass spectrometry (IDMS) methodologies (online and species-specific) using an isotope ratio mass spectrometer (IRMS) and two calculation procedures for each methodology have been compared. As a result, a new method for the determination of DIC in seawaters, based on species-specific IDMS with isotope pattern deconvolution calculation, was developed and validated. A 13C-enriched bicarbonate tracer was added to the sample and, after equilibration and acidification, the isotope abundances at CO2 masses 44, 45, and 46 were measured on an IRMS instrument. Notably, early spiking allows correcting for evaporations and/or adsorptions during sample preparation and storage and could be carried out immediately after sampling. Full uncertainty budgets were calculated taking into account all the factors involved in the determination (initial weights, concentration and isotope abundances of standards, and final IRMS measurements). The average DIC value obtained for CRM seawater agreed very well with the certified value. Propagated precision obtained ranged from 0.035 to 0.050% RSD for individual sample triplicates. Reproducibility, assessed by three independent experiments carried out in different working days, was excellent as well (-0.01% and 0.057%, error and full combined uncertainty, respectively). Additionally, the approach proposed improves on established methods by simplicity, higher throughput (15 min per sample), and lower volume requirements (10 mL).
- Published
- 2018
- Full Text
- View/download PDF