1. Comparison of the Performance of Different Discriminant Algorithms in Analyte Discrimination Tasks Using an Array of Carbon Black−Polymer Composite Vapor Detectors
- Author
-
Nathan S. Lewis, Thomas P. Vaid, and Michael C. Burl
- Subjects
Chemiresistor ,Analyte ,Discriminant ,Chemistry ,Test set ,Partial least squares regression ,Quadratic classifier ,Linear discriminant analysis ,Algorithm ,Analytical Chemistry ,k-nearest neighbors algorithm - Abstract
An array of 20 compositionally different carbon black−polymer composite chemiresistor vapor detectors was challenged under laboratory conditions to discriminate between a pair of extremely similar pure analytes (H_(2)O and D_(2)O), compositionally similar mixtures of pairs of compounds, and low concentrations of vapors of similar chemicals. Several discriminant algorithms were utilized, including k nearest neighbors (kNN, with k = 1), linear discriminant analysis (LDA, or Fisher's linear discriminant), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA, a hybrid of LDA and QDA), partial least squares, and soft independent modeling of class analogy (SIMCA). H_(2)O and D_(2)O were perfectly classified by most of the discriminants when a separate training and test set was used. As expected, discrimination performance decreased as the analyte concentration decreased, and performance decreased as the composition of the analyte mixtures became more similar. RDA was the overall best-performing discriminant, and LDA was the best-performing discriminant that did not require several cross-validations for optimization.
- Published
- 2000
- Full Text
- View/download PDF