1. Shape-Memory Effect Enabled by Ligand Substitution and CO 2 Affinity in a Flexible SIFSIX Coordination Network.
- Author
-
Song BQ, Shivanna M, Gao MY, Wang SQ, Deng CH, Yang QY, Nikkhah SJ, Vandichel M, Kitagawa S, and Zaworotko MJ
- Abstract
We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF
6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, β, phases during activation. β did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to β after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN ., (© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF