Plasmonic materials have drawn emerging interest, especially in nontraditional semiconductor nanostructures with earth-abundant elements and low resistive loss. However, the actualization of highly efficient catalysis in plasmonic semiconductor nanostructures is still a challenge, owing to the presence of surface-capping agents in their synthetic procedures. To fulfill this, a facile non-aqueous procedure was employed to prepare well-defined molybdenum oxide nanosheets in the absence of surfactants. The obtained MoO(3-x) nanosheets display intense absorption in a wide range attributed to the localized surface plasmon resonances, which can be tuned from the visible to the near-infrared region. Herein, we demonstrate that such plasmonic semiconductor nanostructures could be used as highly efficient catalysts that dramatically enhance the hydrogen-generation activity of ammonia borane under visible light irradiation., (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)