1. 5-Phenylselenyl- and 5-methylselenyl-methyl-2′-deoxyuridine induce oxidative stress, DNA damage, and caspase-2-dependent apoptosis in cancer cells
- Author
-
Byeong Mo Kim, Ambadas B. Rode, Eun Jong Han, In Seok Hong, and Sung Hee Hong
- Subjects
Cancer Research ,DNA damage ,Clinical Biochemistry ,Caspase 2 ,Pharmaceutical Science ,Apoptosis ,Biology ,chemistry.chemical_compound ,Cell Line, Tumor ,Neoplasms ,Organoselenium Compounds ,Survivin ,Humans ,Pharmacology ,Inhibitor of apoptosis domain ,Caspase 3 ,Biochemistry (medical) ,Cell Biology ,Caspase Inhibitors ,Deoxyuridine ,Molecular biology ,XIAP ,Enzyme Activation ,Oxidative Stress ,chemistry ,biology.protein ,Reactive Oxygen Species ,Oligopeptides ,Nucleoside ,DNA Damage ,Signal Transduction - Abstract
In the present study, we investigated the signaling pathways implicated in the induction of apoptosis by two modified nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), using human cancer cell lines. The induction of apoptosis was associated with proteolytic activation of caspase-3 and -9, PARP cleavage, and decreased levels of IAP family members, including c-IAP-1 and c-IAP-2, but had no effect on XIAP and survivin. PhSe-T and MeSe-T also enhanced the activities of caspase-2 and -8, Bid cleavage, and the conformational activation of Bax. Additionally, nucleoside derivative-induced apoptosis was inhibited by the selective inhibitors of caspase-2, -3, -8, and -9 and also by si-RNAs against caspase-2, -3, -8, and -9; however, inhibition of caspase-2 and -3 was more effective at preventing apoptosis than inhibition of caspase-8 and -9. Moreover, the inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk or by the knockdown of protein expression using siRNA suppressed nucleoside derivative-induced caspase-3 activation, but not vice versa. PhSe-T and MeSe-T also induced a Δψ(m) loss via a CsA-insensitive mechanism, ROS production, and DNA damage, including strand breaks. Moreover, ROS scavengers such as NAC, tiron, and quercetin inhibited nucleoside derivative-induced ROS generation and apoptosis by blocking the sequential activation of caspase-2 and -3, indicating the role of ROS in caspase-2-mediated apoptosis. Taken together, these results indicate that caspase-2 acts upstream of caspase-3 and that caspase-2 functions in response to DNA damage in both PhSe-T- and MeSe-T-induced apoptosis. Our results also suggest that ROS are critical regulators of the sequential activation of caspase-2 and -3 in nucleoside derivative-treated cancer cells.
- Published
- 2011
- Full Text
- View/download PDF