1. Salmonella enterica in Soils Amended with Heat-Treated Poultry Pellets Survived Longer than Bacteria in Unamended Soils and More Readily Transferred to and Persisted on Spinach
- Author
-
Patricia D. Millner, Manoj Shah, Teresa M. Bergholz, Eric T. Handy, Manan Sharma, Esmond Nyarko, Rhodel Bradshaw, and Cheryl East
- Subjects
0303 health sciences ,Salmonella ,Ecology ,biology ,030306 microbiology ,food and beverages ,Soil classification ,biology.organism_classification ,medicine.disease_cause ,complex mixtures ,Applied Microbiology and Biotechnology ,Viable but nonculturable ,Soil conditioner ,03 medical and health sciences ,Horticulture ,Salmonella enterica ,Soil water ,Food Microbiology ,medicine ,Spinach ,rpoS ,030304 developmental biology ,Food Science ,Biotechnology - Abstract
Untreated biological soil amendments of animal origin (BSAAO) are commonly used as biological fertilizers but can harbor foodborne pathogens like Salmonella enterica, leading to potential transfer from soils to fruits and vegetables intended for human consumption. Heat-treated poultry pellets (HTPP) can provide produce growers with a slow-release fertilizer with a minimized risk of pathogen contamination. Little is known about the impact of HTPP-amended soil on the survival of Salmonella enterica. The contributions of RpoS and formation of viable but nonculturable cells to Salmonella survival in soils are also inadequately understood. We quantified the survival of Salmonella enterica subsp. enterica serovar Newport wild-type (WT) and rpoS-deficient (ΔrpoS mutant) strains in HTPP-amended and unamended soil with or without spinach plants over 91 days using culture and quantitative PCR methods with propidium monoazide (PMA-qPCR). Simulated “splash” transfer of S. Newport from soil to spinach was evaluated at 35 and 63 days postinoculation (dpi). The S. Newport WT and ΔrpoS mutant reached the limit of detection, 1.0 log CFU/g (dry weight), in unamended soil after 35 days, whereas 2 to 4 log CFU/g (dry weight) was observed for both WT and ΔrpoS mutant strains at 91 dpi in HTPP-amended soil. S. Newport levels in soils determined by PMA-qPCR and plate count methods were similar (P > 0.05). HTPP-amended soils supported higher levels of S. Newport transfer to and survival on spinach leaves for longer periods of time than did unamended soils (P
- Published
- 2019
- Full Text
- View/download PDF