1. Effects of diffusion and delayed immune response on dynamic behavior in a viral model.
- Author
-
Alfifi, H.Y.
- Subjects
- *
IMMUNE response , *HOPF bifurcations , *CYTOTOXIC T cells , *BIFURCATION diagrams , *LIMIT cycles , *GALERKIN methods - Abstract
• To demonstrate the Galerkin method's validity, via the accuracy of its predictions using DPDE models. • To structure a process for applying the theoretical framework to find theoretical results. • To show the impacts of diffusion and immune response delay on the model, through bifurcation diagrams. • To determine the steady-state solutions, Hopf points, and the stable and unstable zones. • To illustrate comparisons of the DDE and DPDE approaches through a selection of 2-D and 3-D solution maps. This paper studies a diffusive viral infection system with delayed immune response in the one-domain system. A system of DDE equations was explored, both analytically and numerically, using the Galerkin method. A condition that helps to find Hopf bifurcation points is determined. Full maps of the Hopf bifurcation points as well regions of stability are constructed and considered in detail. It is shown that the time delay of cytotoxic T lymphocyte (CTL) response and the diffusion parameter can significantly impact upon the stability regions. Furthermore, the influences of the other free values have been examined for their effects on stability. It is found that, as diffusion increases, the CTL response delay increases, and also as the CTL response delay is increased, the Hopf points for both generation rate and activate rate are decreased, whereas the Hopf points for the infection and death rates increased. Moreover, an increase diffusion results in an increase in the Hopf points for growth rate and activation rate, while the Hopf bifurcations are decreased for the death rate of infected cells. Bifurcation diagrams are plotted to show selected examples of limit cycle behavior (periodic oscillation), and 3-D solutions for the three concentrations in the model have been plotted to corroborate all analytical results from the theoretical section. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF