1. Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics.
- Author
-
Stenberg J, Hernberg R, and Vattulainen J
- Abstract
A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N(2)O, NO, NO(2), NH(3), SO(2), and H(2)S at atmospheric pressure between 20 and 910 °C. The response of the probe was found to increase with pressure for N(2)O, NO, NH(3), and NO(2) up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.
- Published
- 1995
- Full Text
- View/download PDF