1. In situ tunable giant electrical anisotropy in a grating gated AlGaN/GaN two-dimensional electron gas
- Author
-
Ting-Ting Wang, Sining Dong, Chong Li, Wen-Cheng Yue, Yang-Yang Lyu, Chen-Guang Wang, Chang-Kun Zeng, Zixiong Yuan, Wei Zhu, Zhi-Li Xiao, Xiaoli Lu, Bin Liu, Hai Lu, Hua-Bing Wang, Peiheng Wu, Wai-Kwong Kwok, and Yong-Lei Wang
- Subjects
Physics and Astronomy (miscellaneous) - Abstract
Materials with in-plane electrical anisotropy have great potential for designing artificial synaptic devices. However, natural materials with strong intrinsic in-plane electrical anisotropy are rare. We introduce a simple strategy to produce extremely large electrical anisotropy via grating gating of a semiconductor two-dimensional electron gas (2DEG) of AlGaN/GaN. We show that periodically modulated electric potential in the 2DEG induces in-plane electrical anisotropy, which is significantly enhanced in a magnetic field, leading to an ultra large electrical anisotropy. This is induced by a giant positive magnetoresistance and a giant negative magnetoresistance under two orthogonally oriented in-plane current flows, respectively. This giant electrical anisotropy is in situ tunable by tailoring both the grating gate voltage and the magnetic field. Our semiconductor device with controllable giant electrical anisotropy will stimulate new device applications, such as multi-terminal memtransistors and bionic synapses.
- Published
- 2022
- Full Text
- View/download PDF