1. Schottky barrier contact on In0.53Ga0.47As with short-wave infrared transparent conductive oxide
- Author
-
Tatsuro Maeda, Kazuaki Oishi, Hiroto Ishii, Hiroyuki Ishii, Wen Hsin Chang, Tetsuji Shimizu, Akira Endoh, Hiroki Fujishiro, and Takashi Koida
- Subjects
Physics and Astronomy (miscellaneous) - Abstract
In this study, we fabricate and investigate Schottky barrier contact on n- and p-type In0.53Ga0.47As with transparent conductive oxide (TCO) that transmits light from the visible to short-wave infrared (SWIR) region. The TCO/p-In0.53Ga0.47As contact exhibits explicit rectifying behavior in current–voltage measurement, with an effective Schottky barrier height of 0.587 eV ( I– V) and 0.567 eV ( C– V). Conversely, the TCO/n-In0.53Ga0.47As exhibits the Ohmic behavior. From high-resolution transmission electron microscopy observations, we identified two types of interfacial layers between TCO and InGaAs: an In/Ga-rich InGaAs oxide layer and an In/Ga-deficient InGaAs layer. These interfacial layers may have a significant impact on the performance of the Schottky barrier contact. An ultra-thin Ni-layer insertion at the TCO/n+-InGaAs interface reduces the contact resistivity by more than an order of magnitude while maintaining high transparency. The TCO/p-InGaAs Schottky barrier contact also performs broadband light detection from the visible to SWIR region in a front-side illumination manner, which is highly promising for detecting wavelengths covering the optical communication band.
- Published
- 2022
- Full Text
- View/download PDF