1. Development and Experimental Assessment of a Model for the Material Deposition by Laser-Induced Forward Transfer
- Author
-
Grigori Paris, Dominik Bierbaum, Michael Paris, Dario Mager, and Felix F. Loeffler
- Subjects
transfer mechanisms ,fluorescence imaging ,vertical scanning interferometry ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The potential to deposit minute amounts of material from a donor to an acceptor substrate at precise locations makes laser-induced forward transfer (LIFT) a frequently used tool within different research fields, such as materials science and biotechnology. While many different types of LIFT exist, each specialized LIFT application is based on a different underlying transfer mechanism, which affects the to-be-transferred materials in different ways. Thus, a characterization of these mechanisms is necessary to understand their limitations. The most common investigative methods are high-speed imaging and numerical modeling. However, neither of these can, to date, quantify the material deposition. Here, analytical solutions are derived for the contact-based material deposition by LIFT, which are based on a previously observed equilibrium state. Moreover, an analytical solution for the previously unrecognized ejection-based material deposition is proposed, which is detectable by introducing a distance between the donor and acceptor substrates. This secondary mechanism is particularly relevant in large scale production, since each deposition from a donor substrate potentially induces a local distance between the donor and acceptor substrates.
- Published
- 2022
- Full Text
- View/download PDF