1. Research on High-Strength Economic Support Technology for Soft Rock Roadway with Roof Drenching under Thin Bedrock Irregular Surface
- Author
-
Junfeng Wang, Lianhai Tai, Chong Li, Qundi Qu, Xiaoxiao Yu, Yitao Liu, and Wei Yao
- Subjects
nondestructive immersion test ,mechanical properties ,multistage bearing structure ,anchor cable truss ,zoning control ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The control of soft surrounding rock stability has always been a hot academic issue. Soft rock has poor stability and low strength, and the deformation of a soft rock tunnel becomes more serious after it is affected by water for a long time. In this paper, the Jintong Coal Mine is taken as the research object, and nondestructive immersion experiments are used to study the change in mechanical properties of rock after being affected by water. The FLAC numerical model is used to analyze the stress evolution characteristics of the surrounding rock after being affected by water, and the results of the study show that the water absorption of siltstone is always higher than that of coarse-grained sandstone, and the uniaxial compressive strength of siltstone and coarse-grained sandstone decreases by 54.59% and 67.99%, respectively, under a state of saturated water compared with that under a state of dryness. Influenced by a T-shaped surface, the maximum principal stress concentration area occurs in the rock layer below the T-shaped surface and outside the joint. Concentrations of maximum shear stress occur within the “T” channel. Vertical stress concentration zones occur at the higher ground level and the bottom of the slope. The maximum shear stress of the roof fluctuates before the face reaches the surface of the “1” section, and continues to increase with and continues to increase with the distance of the face. After entering below the surface of the “1” section, the maximum shear stress of the roof increases rapidly, and the influence range is about 24 m. The maximum shear stress distribution plays a dominant role in the stability of the surrounding rocks of the two roadways. We analyze the principle of high-strength economic support, propose a “four-in-one” surrounding rock control technology based on “controlled hydrophobicity, structural adjustment, district management, and gradient control”, and propose a surrounding rock control scheme of district management. The measured data on site show that the roadway surrounding the rock is reasonably controlled. This provides a reference for the stable control of the surrounding rock of the roadway under similar conditions.
- Published
- 2024
- Full Text
- View/download PDF