1. Pattern Discovery in White Etching Crack Experimental Data Using Machine Learning Techniques.
- Author
-
Azzam, Baher, Harzendorf, Freia, Schelenz, Ralf, Holweger, Walter, and Jacobs, Georg
- Subjects
ARTIFICIAL neural networks ,DATA mining ,FAILURE mode & effects analysis ,WIND turbines ,MAINTENANCE costs - Abstract
White etching crack (WEC) failure is a failure mode that affects bearings in many applications, including wind turbine gearboxes, where it results in high, unplanned maintenance costs. WEC failure is unpredictable as of now, and its root causes are not yet fully understood. While WECs were produced under controlled conditions in several investigations in the past, converging the findings from the different combinations of factors that led to WECs in different experiments remains a challenge. This challenge is tackled in this paper using machine learning (ML) models that are capable of capturing patterns in high-dimensional data belonging to several experiments in order to identify influential variables to the risk of WECs. Three different ML models were designed and applied to a dataset containing roughly 700 high- and low-risk oil compositions to identify the constituting chemical compounds that make a given oil composition high-risk with respect to WECs. This includes the first application of a purpose-built neural network-based feature selection method. Out of 21 compounds, eight were identified as influential by models based on random forest and artificial neural networks. Association rules were also mined from the data to investigate the relationship between compound combinations and WEC risk, leading to results supporting those of previous analyses. In addition, the identified compound with the highest influence was proved in a separate investigation involving physical tests to be of high WEC risk. The presented methods can be applied to other experimental data where a high number of measured variables potentially influence a certain outcome and where there is a need to identify variables with the highest influence. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF