1. Investigation of age-related differences in toxicokinetic processes of deoxynivalenol and deoxynivalenol-3-glucoside in weaned piglets.
- Author
-
Catteuw, Amelie, Devreese, Mathias, De Baere, Siegrid, Antonissen, Gunther, Ivanova, Lada, Uhlig, Silvio, Martens, Ann, De Saeger, Sarah, De Boevre, Marthe, and Croubels, Siska
- Subjects
- *
LIQUID chromatography-mass spectrometry , *PIGLETS - Abstract
Age-related differences in toxicokinetic processes of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3G) were studied. DON3G [55.7 µg/kg bodyweight (BW)] and an equimolar dose of DON (36 µg/kg BW) were administered to weaned piglets (4 weeks old) by single intravenous and oral administration in a double two-way cross-over design. Systemic and portal blood was sampled at different time points pre- and post-administration and plasma concentrations of DON, DON3G and their metabolites were quantified using validated liquid chromatography-tandem mass spectrometry (LC–MS/MS) and liquid chromatography–high-resolution mass spectrometry (LC–HRMS) methods. Data were processed using tailor-made compartmental toxicokinetic (TK) models to accurately estimate TK parameters. Results were statistically compared to data obtained in a previous study on 11-week-old pigs using identical experimental conditions. Significant age-related differences in intestinal and systemic exposure to both DON and DON3G were noted. Most remarkably, a significant difference was found for the absorbed fraction of DON3G, after presystemic hydrolysis to DON, in weaned piglets compared to 11-week-old piglets (83% vs 16%, respectively), assumed to be mainly attributed to the higher intestinal permeability of weaned piglets. Other differences in TK parameters could be assigned to a higher water/fat body ratio and longer gastrointestinal transit time of weaned piglets. Results may further refine current risk assessment concerning DON and DON3G in animals. Additionally, since piglets possibly serve as a human paediatric surrogate model, results may be extrapolated to human infants. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF