6 results on '"Triou, H."'
Search Results
2. TheHerschel-SPIRE instrument and its in-flight performance
- Author
-
Griffin, M. J., primary, Abergel, A., additional, Abreu, A., additional, Ade, P. A. R., additional, André, P., additional, Augueres, J.-L., additional, Babbedge, T., additional, Bae, Y., additional, Baillie, T., additional, Baluteau, J.-P., additional, Barlow, M. J., additional, Bendo, G., additional, Benielli, D., additional, Bock, J. J., additional, Bonhomme, P., additional, Brisbin, D., additional, Brockley-Blatt, C., additional, Caldwell, M., additional, Cara, C., additional, Castro-Rodriguez, N., additional, Cerulli, R., additional, Chanial, P., additional, Chen, S., additional, Clark, E., additional, Clements, D. L., additional, Clerc, L., additional, Coker, J., additional, Communal, D., additional, Conversi, L., additional, Cox, P., additional, Crumb, D., additional, Cunningham, C., additional, Daly, F., additional, Davis, G. R., additional, De Antoni, P., additional, Delderfield, J., additional, Devin, N., additional, Di Giorgio, A., additional, Didschuns, I., additional, Dohlen, K., additional, Donati, M., additional, Dowell, A., additional, Dowell, C. D., additional, Duband, L., additional, Dumaye, L., additional, Emery, R. J., additional, Ferlet, M., additional, Ferrand, D., additional, Fontignie, J., additional, Fox, M., additional, Franceschini, A., additional, Frerking, M., additional, Fulton, T., additional, Garcia, J., additional, Gastaud, R., additional, Gear, W. K., additional, Glenn, J., additional, Goizel, A., additional, Griffin, D. K., additional, Grundy, T., additional, Guest, S., additional, Guillemet, L., additional, Hargrave, P. C., additional, Harwit, M., additional, Hastings, P., additional, Hatziminaoglou, E., additional, Herman, M., additional, Hinde, B., additional, Hristov, V., additional, Huang, M., additional, Imhof, P., additional, Isaak, K. J., additional, Israelsson, U., additional, Ivison, R. J., additional, Jennings, D., additional, Kiernan, B., additional, King, K. J., additional, Lange, A. E., additional, Latter, W., additional, Laurent, G., additional, Laurent, P., additional, Leeks, S. J., additional, Lellouch, E., additional, Levenson, L., additional, Li, B., additional, Li, J., additional, Lilienthal, J., additional, Lim, T., additional, Liu, S. J., additional, Lu, N., additional, Madden, S., additional, Mainetti, G., additional, Marliani, P., additional, McKay, D., additional, Mercier, K., additional, Molinari, S., additional, Morris, H., additional, Moseley, H., additional, Mulder, J., additional, Mur, M., additional, Naylor, D. A., additional, Nguyen, H., additional, O'Halloran, B., additional, Oliver, S., additional, Olofsson, G., additional, Olofsson, H.-G., additional, Orfei, R., additional, Page, M. J., additional, Pain, I., additional, Panuzzo, P., additional, Papageorgiou, A., additional, Parks, G., additional, Parr-Burman, P., additional, Pearce, A., additional, Pearson, C., additional, Pérez-Fournon, I., additional, Pinsard, F., additional, Pisano, G., additional, Podosek, J., additional, Pohlen, M., additional, Polehampton, E. T., additional, Pouliquen, D., additional, Rigopoulou, D., additional, Rizzo, D., additional, Roseboom, I. G., additional, Roussel, H., additional, Rowan-Robinson, M., additional, Rownd, B., additional, Saraceno, P., additional, Sauvage, M., additional, Savage, R., additional, Savini, G., additional, Sawyer, E., additional, Scharmberg, C., additional, Schmitt, D., additional, Schneider, N., additional, Schulz, B., additional, Schwartz, A., additional, Shafer, R., additional, Shupe, D. L., additional, Sibthorpe, B., additional, Sidher, S., additional, Smith, A., additional, Smith, A. J., additional, Smith, D., additional, Spencer, L., additional, Stobie, B., additional, Sudiwala, R., additional, Sukhatme, K., additional, Surace, C., additional, Stevens, J. A., additional, Swinyard, B. M., additional, Trichas, M., additional, Tourette, T., additional, Triou, H., additional, Tseng, S., additional, Tucker, C., additional, Turner, A., additional, Vaccari, M., additional, Valtchanov, I., additional, Vigroux, L., additional, Virique, E., additional, Voellmer, G., additional, Walker, H., additional, Ward, R., additional, Waskett, T., additional, Weilert, M., additional, Wesson, R., additional, White, G. J., additional, Whitehouse, N., additional, Wilson, C. D., additional, Winter, B., additional, Woodcraft, A. L., additional, Wright, G. S., additional, Xu, C. K., additional, Zavagno, A., additional, Zemcov, M., additional, Zhang, L., additional, and Zonca, E., additional
- Published
- 2010
- Full Text
- View/download PDF
3. In-flight calibration of theHerschel-SPIRE instrument
- Author
-
Swinyard, B. M., primary, Ade, P., additional, Baluteau, J.-P., additional, Aussel, H., additional, Barlow, M. J., additional, Bendo, G. J., additional, Benielli, D., additional, Bock, J., additional, Brisbin, D., additional, Conley, A., additional, Conversi, L., additional, Dowell, A., additional, Dowell, D., additional, Ferlet, M., additional, Fulton, T., additional, Glenn, J., additional, Glauser, A., additional, Griffin, D., additional, Griffin, M., additional, Guest, S., additional, Imhof, P., additional, Isaak, K., additional, Jones, S., additional, King, K., additional, Leeks, S., additional, Levenson, L., additional, Lim, T. L., additional, Lu, N., additional, Makiwa, G., additional, Naylor, D., additional, Nguyen, H., additional, Oliver, S., additional, Panuzzo, P., additional, Papageorgiou, A., additional, Pearson, C., additional, Pohlen, M., additional, Polehampton, E., additional, Pouliquen, D., additional, Rigopoulou, D., additional, Ronayette, S., additional, Roussel, H., additional, Rykala, A., additional, Savini, G., additional, Schulz, B., additional, Schwartz, A., additional, Shupe, D., additional, Sibthorpe, B., additional, Sidher, S., additional, Smith, A. J., additional, Spencer, L., additional, Trichas, M., additional, Triou, H., additional, Valtchanov, I., additional, Wesson, R., additional, Woodcraft, A., additional, Xu, C. K., additional, Zemcov, M., additional, and Zhang, L., additional
- Published
- 2010
- Full Text
- View/download PDF
4. The Herschelrevolution: Unveiling the morphology of the high-mass star-formation sites N44 and N63 in the LMC*
- Author
-
Hony, S., Galliano, F., Madden, S. C., Panuzzo, P., Meixner, M., Engelbracht, C., Misselt, K., Galametz, M., Sauvage, M., Roman-Duval, J., Gordon, K., Lawton, B., Bernard, J.-P., Bolatto, A., Okumura, K., Chen, C.-H. R., Indebetouw, R., Israel, F. P., Kwon, E., Li, A., Kemper, F., Oey, M. S., Rubio, M., and Triou, H. E.
- Abstract
Aims. We study the structure of the medium surrounding sites of high-mass star formation to determine the interrelation between the H iiregions and the environment from which they were formed. The density distribution of the surroundings is key in determining how the radiation of the newly formed stars interacts with the surroundings in a way that allows it to be used as a star-formation tracer.Methods. We present new Herschel/SPIRE 250 μm, 350 μm and 500 μm data of LHA 120-N44 and LHA 120-N63 in the LMC. We construct average spectral energy distributions (SEDs) for annuli centered on the IR bright part of the star-formation sites. The annuli cover ~10–~100 pc. We use a phenomenological dust model to fit these SEDs to derive the dust column-densities, characterize the incident radiation field and the abundance of polycyclic aromatic hydrocarbon molecules. We see a decrease of a factor 5 in the radiation field energy-density as a function of radial distance around N63. The source N44 does not show a systematic trend. We construct a simple geometrical model to derive the 3D density profile of the surroundings of these two regions.Results. Herschel/SPIRE data have proven very efficient in deriving the dust-mass distribution. We find that the radiation field in the two sources behaves very differently. N63 is more or less spherically symmetric and the average radiation field drops with distance. N44 shows no systematic decrease of the radiation intensity, which is probably due to the inhomogeneity of the surrounding molecular material and to the complex distribution of several star-forming clusters in the region.
- Published
- 2010
5. In-flight calibration of the Herschel-SPIRE instrument*
- Author
-
Swinyard, B. M., Ade, P., Baluteau, J.-P., Aussel, H., Barlow, M. J., Bendo, G. J., Benielli, D., Bock, J., Brisbin, D., Conley, A., Conversi, L., Dowell, A., Dowell, D., Ferlet, M., Fulton, T., Glenn, J., Glauser, A., Griffin, D., Griffin, M., Guest, S., Imhof, P., Isaak, K., Jones, S., King, K., Leeks, S., Levenson, L., Lim, T. L., Lu, N., Makiwa, G., Naylor, D., Nguyen, H., Oliver, S., Panuzzo, P., Papageorgiou, A., Pearson, C., Pohlen, M., Polehampton, E., Pouliquen, D., Rigopoulou, D., Ronayette, S., Roussel, H., Rykala, A., Savini, G., Schulz, B., Schwartz, A., Shupe, D., Sibthorpe, B., Sidher, S., Smith, A. J., Spencer, L., Trichas, M., Triou, H., Valtchanov, I., Wesson, R., Woodcraft, A., Xu, C. K., Zemcov, M., and Zhang, L.
- Abstract
SPIRE, the Spectral and Photometric Imaging REceiver, is the HerschelSpace Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herscheltelescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
- Published
- 2010
6. The Herschel-SPIRE instrument and its in-flight performance*
- Author
-
Griffin, M. J., Abergel, A., Abreu, A., Ade, P. A. R., André, P., Augueres, J.-L., Babbedge, T., Bae, Y., Baillie, T., Baluteau, J.-P., Barlow, M. J., Bendo, G., Benielli, D., Bock, J. J., Bonhomme, P., Brisbin, D., Brockley-Blatt, C., Caldwell, M., Cara, C., Castro-Rodriguez, N., Cerulli, R., Chanial, P., Chen, S., Clark, E., Clements, D. L., Clerc, L., Coker, J., Communal, D., Conversi, L., Cox, P., Crumb, D., Cunningham, C., Daly, F., Davis, G. R., De Antoni, P., Delderfield, J., Devin, N., Di Giorgio, A., Didschuns, I., Dohlen, K., Donati, M., Dowell, A., Dowell, C. D., Duband, L., Dumaye, L., Emery, R. J., Ferlet, M., Ferrand, D., Fontignie, J., Fox, M., Franceschini, A., Frerking, M., Fulton, T., Garcia, J., Gastaud, R., Gear, W. K., Glenn, J., Goizel, A., Griffin, D. K., Grundy, T., Guest, S., Guillemet, L., Hargrave, P. C., Harwit, M., Hastings, P., Hatziminaoglou, E., Herman, M., Hinde, B., Hristov, V., Huang, M., Imhof, P., Isaak, K. J., Israelsson, U., Ivison, R. J., Jennings, D., Kiernan, B., King, K. J., Lange, A. E., Latter, W., Laurent, G., Laurent, P., Leeks, S. J., Lellouch, E., Levenson, L., Li, B., Li, J., Lilienthal, J., Lim, T., Liu, S. J., Lu, N., Madden, S., Mainetti, G., Marliani, P., McKay, D., Mercier, K., Molinari, S., Morris, H., Moseley, H., Mulder, J., Mur, M., Naylor, D. A., Nguyen, H., O'Halloran, B., Oliver, S., Olofsson, G., Olofsson, H.-G., Orfei, R., Page, M. J., Pain, I., Panuzzo, P., Papageorgiou, A., Parks, G., Parr-Burman, P., Pearce, A., Pearson, C., Pérez-Fournon, I., Pinsard, F., Pisano, G., Podosek, J., Pohlen, M., Polehampton, E. T., Pouliquen, D., Rigopoulou, D., Rizzo, D., Roseboom, I. G., Roussel, H., Rowan-Robinson, M., Rownd, B., Saraceno, P., Sauvage, M., Savage, R., Savini, G., Sawyer, E., Scharmberg, C., Schmitt, D., Schneider, N., Schulz, B., Schwartz, A., Shafer, R., Shupe, D. L., Sibthorpe, B., Sidher, S., Smith, A., Smith, A. J., Smith, D., Spencer, L., Stobie, B., Sudiwala, R., Sukhatme, K., Surace, C., Stevens, J. A., Swinyard, B. M., Trichas, M., Tourette, T., Triou, H., Tseng, S., Tucker, C., Turner, A., Vaccari, M., Valtchanov, I., Vigroux, L., Virique, E., Voellmer, G., Walker, H., Ward, R., Waskett, T., Weilert, M., Wesson, R., White, G. J., Whitehouse, N., Wilson, C. D., Winter, B., Woodcraft, A. L., Wright, G. S., Xu, C. K., Zavagno, A., Zemcov, M., Zhang, L., and Zonca, E.
- Abstract
The Spectral and Photometric Imaging REceiver (SPIRE), is the HerschelSpace Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194–671 μm (447–1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4´× 8´, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6´. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschelcryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5–2.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.