5 results on '"MARINE engine emissions"'
Search Results
2. Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission.
- Author
-
Zhu, Yuanqing, Zhou, Weihao, Xia, Chong, and Hou, Qichen
- Subjects
- *
THERMAL efficiency , *MARINE engineering , *EMISSIONS (Air pollution) , *CATALYTIC reduction , *DIESEL motors , *MARINE engine emissions , *EXHAUST gas recirculation - Abstract
In recent years, the International Maritime Organization (IMO), Europe, and the United States and other countries have set up different emission control areas (ECA) for ship exhaust pollutants to enforce more stringent pollutant emission regulations. In order to meet the current IMO Tier III emission regulations, an after-treatment device must be installed in the exhaust system of the ship power plant to reduce the ship NOx emissions. At present, selective catalytic reduction technology (SCR) is one of the main technical routes to resolve excess NOx emissions of marine diesel engines, and is the only NOx emission reduction technology recognized by the IMO that can be used for various ship engines. Compared with the conventional low-pressure SCR system, the high-pressure SCR system can be applied to low-speed marine diesel engines that burn inferior fuels, but its working conditions are relatively harsh, and it can be susceptible to operational problems such as sulfuric acid corrosion, salt blockage, and switching delay during the actual ship tests and ship applications. Therefore, it is necessary to improve the design method and matching strategy of the high-pressure SCR system to achieve a more efficient and reliable operation. This article summarizes the technical characteristics and application problems of marine diesel engine SCR systems in detail, tracks the development trend of the catalytic reaction mechanism, engine tuning, and control strategy under high sulfur exhaust gas conditions. Results showed that low temperature is an important reason for the formation of ammonium nitrate, ammonium sulfate, and other deposits. Additionally, the formed deposits will directly affect the working performance of the SCR systems. The development of SCR technology for marine low-speed engines should be the compromise solution under the requirements of high sulfur fuel, high thermal efficiency, and low pollution emissions. Under the dual restrictions of high sulfur fuel and low exhaust temperature, the low-speed diesel engine SCR systems will inevitably sacrifice part of the engine economy to obtain higher denitrification efficiency and operational reliability. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines
- Author
-
Päivi Aakko-Saksa, Niina Kuittinen, Timo Murtonen, Päivi Koponen, Minna Aurela, Anssi Järvinen, Kimmo Teinilä, Sanna Saarikoski, Luis M. F. Barreira, Laura Salo, Panu Karjalainen, Ismael K. Ortega, David Delhaye, Kati Lehtoranta, Hannu Vesala, Pasi Jalava, Topi Rönkkö, and Hilkka Timonen
- Subjects
marine engine emissions ,black carbon ,instrumental comparison ,smoke meter ,FSN ,PAS ,Meteorology. Climatology ,QC851-999 - Abstract
Black carbon (BC) emissions intensify global warming and are linked to adverse health effects. The International Maritime Organization (IMO) considers the impact of BC emissions from international shipping. A prerequisite for the anticipated limits to BC emissions from marine engines is a reliable measurement method. The three candidate methods (photoacoustic spectroscopy (PAS), laser-induced incandescence (LII), and filter smoke number (FSN)) selected by the IMO were evaluated with extensive ship exhaust matrices obtained by different fuels, engines, and emission control devices. A few instruments targeted for atmospheric measurements were included as well. The BC concentrations were close to each other with the smoke meters (AVL 415S and 415SE), PAS (AVL MSS), LII (Artium-300), MAAP 5012, aethalometers (Magee AE-33 and AE-42), and EC (TOA). In most cases, the standard deviation between instruments was in the range of 5–15% at BC concentrations below 30 mg Sm−3. Some differences in the BC concentrations measured with these instruments were potentially related to the ratio of light-absorbing compounds to sulphates or to particle sizes and morphologies. In addition, calibrations, sampling, and correction of thermophoretic loss of BC explained differences in the BC results. However, overall differences in the BC results obtained with three candidate methods selected by the IMO were low despite challenging exhaust compositions from marine diesel engines. Findings will inform decision making on BC emission control from marine engines.
- Published
- 2021
- Full Text
- View/download PDF
4. Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines.
- Author
-
Aakko-Saksa, Päivi, Kuittinen, Niina, Murtonen, Timo, Koponen, Päivi, Aurela, Minna, Järvinen, Anssi, Teinilä, Kimmo, Saarikoski, Sanna, Barreira, Luis M. F., Salo, Laura, Karjalainen, Panu, Ortega, Ismael K., Delhaye, David, Lehtoranta, Kati, Vesala, Hannu, Jalava, Pasi, Rönkkö, Topi, and Timonen, Hilkka
- Subjects
- *
MARINE engine emissions , *CARBON-black , *CARBON emissions , *GLOBAL warming , *PHOTOACOUSTIC spectroscopy , *EXHAUST gas recirculation , *MOTION control devices - Abstract
Black carbon (BC) emissions intensify global warming and are linked to adverse health effects. The International Maritime Organization (IMO) considers the impact of BC emissions from international shipping. A prerequisite for the anticipated limits to BC emissions from marine engines is a reliable measurement method. The three candidate methods (photoacoustic spectroscopy (PAS), laser-induced incandescence (LII), and filter smoke number (FSN)) selected by the IMO were evaluated with extensive ship exhaust matrices obtained by different fuels, engines, and emission control devices. A few instruments targeted for atmospheric measurements were included as well. The BC concentrations were close to each other with the smoke meters (AVL 415S and 415SE), PAS (AVL MSS), LII (Artium-300), MAAP 5012, aethalometers (Magee AE-33 and AE-42), and EC (TOA). In most cases, the standard deviation between instruments was in the range of 5–15% at BC concentrations below 30 mg Sm−3. Some differences in the BC concentrations measured with these instruments were potentially related to the ratio of light-absorbing compounds to sulphates or to particle sizes and morphologies. In addition, calibrations, sampling, and correction of thermophoretic loss of BC explained differences in the BC results. However, overall differences in the BC results obtained with three candidate methods selected by the IMO were low despite challenging exhaust compositions from marine diesel engines. Findings will inform decision making on BC emission control from marine engines. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Analysis of Marine Diesel Engine Emission Characteristics of Different Power Ranges in China.
- Author
-
Ma, Zhongmin, Yang, Yuanyuan, Sun, Peiting, Xing, Hui, Duan, Shulin, Qu, Hongfei, and Zou, Yongjiu
- Subjects
- *
MARINE engine emissions , *AIR pollution control , *MARINE engines , *DIESEL motors , *SHIP fuel , *MARITIME shipping , *ENGINE testing - Abstract
In order to accurately assess China's port air pollution caused by the shipping industry, two main methods can be used to calculate the emissions of ships, including the method based on ship fuel consumption and the method based on ship activities. Both methods require accurate diesel engine emission factors, or specific emissions. In this paper, the emission characteristics of NOX, CO, CO2 and THC from 197 domestic marine diesel engines were tested under bench test conditions by a standard emission measurement system. The diesel engines were divided into six Classes, A~F, according to their power distribution, and the fuel-based emission factors and energy-based emission factors of marine main engine and auxiliary engine meeting IMO NOX Tier II standards were given. The results showed that the main engine fuel-based emission factors of NOX, CO, CO2 and THC from Class A to Class F were 33.25~76.58, 2.70~4.33, 3123.92~3166.47 and 1.10~2.64 kg/t-fuel, respectively; and the energy-based emission factors were 6.57~11.75, 0.56~0.81, 530.28~659.71 and 0.18~0.61 g/kW h, respectively. The auxiliary engine fuel-based emission factors of NOX, CO, CO2 and THC from Class A to Class D were 27.17~39.81, 2.66~5.12, 3113.01~3141.34 and 1.16~2.87 kg/t-fuel respectively; and their energy-based emission factors were 6.06~8.33, 0.47~0.77, 656.86~684.91 and 0.21~0.61 g/kW h, respectively. The emission factors for different types of diesel engines were closely related to the diesel engine load, and the relation between them could be expressed by quadratic polynomial or power function. The results of this paper provide valuable data for the estimation of waterway transportation exhaust emissions and comprehensive understanding of the emission characteristics of marine diesel engines. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.