1. Thermoascus aurantiacus harbors an esterase/lipase that is highly activated by anionic surfactant.
- Author
-
de Melo VS, de Melo RR, Rade LL, Miyamoto RY, Milan N, de Souza CM, de Oliveira VM, Simões IT, de Lima EA, Guilherme EPX, Pinheiro GMS, Inacio Ramos CH, Persinoti GF, Generoso WC, and Zanphorlin LM
- Subjects
- Sodium Dodecyl Sulfate chemistry, Substrate Specificity, Hydrolysis, Fungal Proteins chemistry, Fungal Proteins metabolism, Anions chemistry, Anions metabolism, Enzyme Stability, Surface-Active Agents chemistry, Surface-Active Agents pharmacology, Lipase metabolism, Lipase chemistry, Esterases metabolism, Esterases chemistry
- Abstract
Fungal lipolytic enzymes play crucial roles in various lipid bio-industry processes. Here, we elucidated the biochemical and structural characteristics of an unexplored fungal lipolytic enzyme (TaLip) from Thermoascus aurantiacus var. levisporus, a strain renowned for its significant industrial relevance in carbohydrate-active enzyme production. TaLip belongs to a poorly understood phylogenetic branch within the class 3 lipase family and prefers to hydrolyze mainly short-chain esters. Nonetheless, it also displays activity against natural long-chain triacylglycerols. Furthermore, our analyses revealed that the surfactant sodium dodecyl sulfate (SDS) enhances the hydrolytic activity of TaLip on pNP butyrate by up to 5.0-fold. Biophysical studies suggest that interactions with SDS may prevent TaLip aggregation, thereby preserving the integrity and stability of its monomeric form and improving its performance. These findings highlight the resilience of TaLip as a lipolytic enzyme capable of functioning in tandem with surfactants, offering an intriguing enzymatic model for further exploration of surfactant tolerance and activation in biotechnological applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF