1. Elevated K-ras activity with cholestyramine and lovastatin, but not konjac mannan or niacin in lung—–Importance of mouse strain
- Author
-
Calvert, Richard J., Tepper, Shirley, Kammouni, Wafa, Anderson, Lucy M., and Kritchevsky, David
- Subjects
- *
BLOOD plasma , *BLOOD cholesterol , *ISOPENTENOIDS , *CARDIOPULMONARY system - Abstract
Abstract: Our previous work established that hypocholesterolemic agents altered K-ras intracellular localization in lung. Here, we examined K-ras activity to define further its potential importance in lung carcinogenesis. K-ras activity in lungs from male A/J, Swiss and C57BL/6 mice was examined. For 3 weeks, mice consumed either 2 or 4% cholestyramine (CS), 1% niacin, 5% konjac mannan (KM), or were injected with lovastatin 25mg/kg three or five times weekly (Lov-3X and Lov-5X). A pair-fed (PF) group was fed the same quantity of diet consumed by the Lov-5X mice to control for lower body weights in Lov-5X mice. After 3 weeks, serum cholesterol was assayed with a commercial kit. Activated K-ras protein from lung was affinity precipitated with a Raf-1 ras binding domain-glutathione-S-transferase fusion protein bound to glutathione-agarose beads, followed by Western blotting, K-ras antibody treatment, and chemiluminescent detection. Only KM reduced serum cholesterol (in two of three mouse strains). In C56BL/6 mice treated with Lov-3X, lung K-ras activity increased 1.8-fold versus control (p =0.009). In normal lung with wild-type K-ras, this would be expected to be associated with maintenance of differentiation. In A/J mice fed 4% CS, K-ras activity increased 2.1-fold (p =0.02), which might be responsible for the reported enhancement of carcinogenesis in carcinogen-treated rats fed CS. KM feeding and PF treatment had no significant effects on K-ras activity. These data are consistent with the concept that K-ras in lung has an oncogenic function when mutated, but may act as a tumor suppressor when wild-type. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF